Smart Pascal: Changes

February 6, 2017 Leave a comment Go to comments

The changes to Smart Mobile Studio over the past 12 months have been tremendous. At first glance they might not seem huge, but if you do a raw compare on the upcoming RTL and the now more than a year old RTL – I think you will find that there are very few places in the code where I havent done improvements.

In this post I will try to collect some of the changes. A final change log will be released together with the update, but at least this “preview” will tell you something about the hours, days, weeks and months I have put into the RTL.

The Smart Lab, this is where most of my ideas turn into code :)

The Smart Lab, this is where most of my ideas turn into code ūüôā

There will also be changes to the IDE; We have 3 members that both have added new features in the past, and members that are adding changes right now. The immediate being an update from Chromium Embedded CEF2 to CEF4, which is a huge change in speed and preview quality. And there are other more important changes being worked on, the most pressing being the designer and “live” rendering of controls.

Ok, let’s just dive into it!

RTL Changes

  • The units that make up the RTL are now organized according to a namespace scheme
    • Visual units are prefixed with SmartCL
    • Universal units are prefixed with System
    • Low level API units for node.js are prefixed with NodeJS
    • High level Node classes are prefixed with SmartNJ
  • Better fragmentation: Code that was previously a part of one very large unit has been divided into smaller files to avoid large binaries. For example:
    • ¬†TRect, TPoint etc. are now in System.Types.Graphics
    • System.Time is extended with SmartCL.Time which gives graphical timing functions like TW3Dispatch.RequestAnimationFrame()
  • The unit System.Objects has been added, isolating¬†classes that work both in browsers, node and headless runtime environments:
    • TW3ErrorObjectOptions
    • TW3ErrorObject
    • TW3OwnedErrorObject
    • TW3HandleBasedObject
  • TW3Label has been completely re-written and is now faster, has synchronized state management, resize on ready-state and much more
  • The unit¬†System.NameValuePairs was added. This implements a traditional name/value list (or dictionary) that is used by various classes and standards throughout the RTL (http headers being an example)
  • A show stopping bug in SmartCL.Effects has been fixed. Effects now works as expected (simply add SmartCL.Effects to your uses clause)
  • TFileStream has been added to SmartNJ.Streams. This is unique for node.js since only node (and some hybrid runtime engines) support direct file access.
  • TBinaryData is extended in SmartNJ.Streams.pas to emit and consume node.js buffers which are different from traditional JS buffers. ToNodeBuffer() and FromNodeBuffer() allows you to consume special node buffer types.
  • A full software tweening engine has been written from scratch in pure Smart Pascal and added to the SmartCL namespace. The following units¬†have been added:
    • SmartCL.Tween
      • TW3TweenElement
      • TW3TweenEngine
      • function TweenEngine: TW3TweenEngine
    • SmartCL.Tween.Effect
      • TW3CustomEffect
      • TW3CustomTweenEffect
      • TW3ControlTweenEffect
      • TW3MoveXEffect
      • TW3MoveYEffect
      • TW3MoveToEffect
      • TW3ColorMorphEffect
      • TW3CustomOpacityEffect
      • TW3FadeInEffect
      • TW3FadeOutEffect
      • TW3OpacityEffect
    • SmartCL.Tween.Ease
      • TW3TweenEase
      • TW3TweenEaseLinear
      • TW3TweenEaseQuadIn
      • TW3TweenEaseQuadOut
      • TW3TweenEaseQuadInOut
      • TW3TweenEaseCubeIn
      • TW3TweenEaseCubeOut
      • TW3TweenEaseCubeInOut
      • TW3TweenEaseQuartIn
      • TW3TweenEaseQuartOut
      • TW3TweenEaseQuartInOut
      • TW3TweenEaseQuintIn
      • TW3TweenEaseQuintOut
      • TW3TweenEaseQuintInOut
      • TW3TweenEaseSineIn
      • TW3TweenEaseSineOut
      • TW3TweenEaseSineInOut
      • TW3TweenEaseExpoIn
      • TW3TweenEaseExpoOut
      • TW3TweenEaseExpoInOut
      • TW3TweenEaseCollection
      • function TweenEaseCollection: TW3TweenEaseCollection
  • Support for require.js¬†(simplified resource management and more) is now a part of the RTL. The unit SmartCL.Require gives you:
    • TRequireError
    • TW3RequireJSConfig
    • TW3RequireJS
    • function Require: TW3RequireJS;
    • procedure Require(Files: TStrArray);
    • procedure Require(Files: TStrArray; const Success: TProcedureRef);
    • procedure Require(Files: TStrArray; const Success: TProcedureRef; const Failure: TW3RequireErrHandler);
  • SmartCL (browser) based communication has been consolidated into more appropriate named units:
    • SmartCL.Net.http
    • SmartCL.Net.http.headers
    • SmartCL.Net.websocket
    • SmartCL.Net.jsonp
    • SmartCL.Net.socketIO
  • A callback bug in the REST api has been fixed (called wrong handler on exit)
  • Suppport for mutation events has been added to the RTL. This can be found in the unit SmartCL.Observer. Mutation observer allows you to listen for changes to any HTML element, its properties or attributes. This is a very important unit with regards to data-aware controls:
    • TMutationObserverOptions
    • TMutationObserver
  • A fallback shim for mutation observing has been added to the¬†$RTL\Shims folder. This ensures that mutation events can be observed even on older browsers.
  • A MSIE legacy shim that patches all missing IE functionality from the current back to IE5 has been added. This allows Smart applications to execute without problems on older browsers (which there are surpricingly many of)
  • The unit SmartCL.Styles has been added. This contains classes and methods that create a stylesheet at runtime. The stylesheet is deleted when the object instance is disposed. This allows for easier styling from within your code rather than having to pre-define it in the global css file.
  • Polygon helper classes have been isolated in SmartCL.Polygons. These expose functionality to TPointArray and TPointFArray:
    • TPolygonHelper
    • TPolygonFHelper
  • Support for has been added for the browser. The unit SmartCL.Net.SocketIO contains the following client class and methods:
    • TW3SocketIOClient
      • procedure Connect(RemoteHost: string)
      • procedure Disconnect
      • procedure Emit(EventName: string; Data: variant)
      • procedure On(EventName: string; Handler: TW3SocketIOHandler)
  • Support for has been added to the new SmartNJ namespace as well, allowing you to write fast, good performance SocketIO servers.
  • Support for WebSocketIO, an amalgamation of classic WebSocket and SocketIO has been added. This is the default socketio server type for our node.js system
  • Support for user-attributes has been added and isolated in SmartCL.Attributes. This allows you to easily add, read, write and remove custom attributes to any tag. This is a very important feature that is used both by the effects framework – and also by the database framework.
  • SmartCl.Buffers unit has been updated. Now uses the latest methods of the RTL and now works on all browsers, not just webkit and Firefox.
  • $RTL\SmartCL\Controllers\SmartCL.Scroll.Momentum has been removed
  • $RTL\SmartCL\Controllers\SmartCL.Scroll.plain has been removed
  • All visual controls have been updated, rewritten and thoroughly tested
  • The RTL now has support for ACE, the #1 JavaScript code editor. This is more or less a JavaScript implementation of Delphi’s Synedit, but with functionality closer to Sublime. Ace comprises¬†over 100 files. In this first release we have focused on getting a respectable basis in place.
    • The wrapper units is¬†SmartCL.AceEditor, which gives you the following classes:
      • TW3AceMode
      • TW3AceTheme
      • TW3AceEditor
        • Text: string
        • SelectedText: string
        • LineCount: integer
        • WordWrap: boolean {get; set;}
        • ShowPrintMargin: boolean {get; set;}
        • EditorMode:¬†TW3AceMode {get; set;}
        • Theme: TW3AceTheme {get; set;}
    • Modes and syntax we added support for:
      • AceEdit.Mode.Abap
      • AceEdit.Mode.Abc
      • AceEdit.Mode.ActionScript
      • AceEdit.Mode.Ada
      • AceEdit.Mode.Apache
      • AceEdit.Mode.AppleScript
      • AceEdit.Mode.Ascii
      • AceEdit.Mode.AutoHotKey
      • AceEdit.Mode.Base
      • AceEdit.Mode.BatchFile
      • AceEdit.Mode.C9Search
      • AceEdit.Mode.Cirru
      • AceEdit.Mode.Clojure
      • AceEdit.Mode.Cobol
      • AceEdit.Mode.Coffee
      • AceEdit.Mode.ColdFusion
      • AceEdit.Mode.Cpp
      • AceEdit.Mode.CSharp
      • AceEdit.Mode.CSS
      • AceEdit.Mode.Curly
      • AceEdit.Mode.D
      • AceEdit.Mode.Dart
      • AceEdit.Mode.Diff
      • AceEdit.Mode.django
      • AceEdit.Mode.Pascal
      • AceEdit.Mode.VbScript
      • AceEdit.Mode.X86Asm
    • Themes we¬†support:
      • AceEdit.Theme.Ambiance
      • AceEdit.Theme.Base
      • AceEdit.Theme.Chaos
      • AceEdit.Theme.Chrome
      • AceEdit.Theme.CloudMidnight
      • AceEdit.Theme.Clouds
      • AceEdit.Theme.Cobalt
      • AceEdit.Theme.CrimsonEdit
      • AceEdit.Theme.Dawn
      • AceEdit.Theme.Dreamweaver
      • AceEdit.Theme.eclipse
      • AceEdit.Theme.Github
      • AceEdit.Theme.Monokai
      • AceEdit.Theme.Twilight
  • The RTL has a completely re-written ready-state engine. Since JavaScript is ASync by nature, the handle or reference to the TAG a class manages may not be ready during the constructor. The ready-state engine waits in the background for the handle to become valid and the control available in the DOM (document object model). It then sets the appropriate component-state flags and issues a resize to ensure that the control looks as it should.
  • Support for Control-State (which is common in Delphi and Lazarus) has been added to visual controls. The following state flags can be read or set:
    • csCreating
    • csLoading
    • csReady
    • csSized
    • csMoved
    • csDestroying
  • TW3CustomControl now supports creation-flags. This is also a feature common to Delphi’s VCL and Lazarus’s LCL. It allows you to set some flags that disable fundamental behavior when you don’t need it. For instance, a label which will always have a fixed size or be in a fixed place does not need Resize() management. Turning off resize-checking makes you application execute faster. The following creation flags can be defined:
    • cfIgnoreReadyState
    • cfSupportAdjustment
    • cfReportChildAddition
    • cfReportChildRemoval
    • cfReportMovement
    • cfReportResize
    • cfAllowSelection
    • cfKeyCapture
  • To enable or disable component states, use the following methods of TW3CustomControl:
    • procedure AddToComponentState(const Flags: TComponentState)
    • procedure RemoveFromComponentState(Const Flags: TComponentState)
  • Support for keyboard input and charcode capture has been added to the RTL. Simply add the flag cfKeyCapture to the CreationFlags() function of your custom-control and the control’s OnKeyPress event will fire when the control has focus and a key is pressed. By default this is turned off.
  • Support for text-selection and disabling text-selection has been added. Simply add or remove¬†cfAllowSelection from your controls CreationFlags() function. By default text selection is turned off (except for obvious controls like text-edit).
  • TW3CustomControl now has a zIndex property. This represents the z-order of a control (which control is in front of others).
  • The function TW3CustomControl.GetZOrderList(sort: boolean) can be called to get a sorted or un-sorted list of child elements. This provides both the handle for each control and its zindex value.
  • The method TW3CustomControl.Showing() has been updated, it now takes height for IFrame and CSS4 GPU positioning (read: it will understand that its offscreen even if you use CSS3 to move it).
  • TW3CustomControl now has a Cursor property. This allows you to read and set the mouse cursor for a control. The following cursors are supported:
    • crAuto
    • crDefault
    • crInherited
    • crURL
    • crCrossHair
    • crHelp
    • crMove
    • crPointer
    • crProgress
    • crText
    • crWait
    • crNResize
    • crSResize
    • crEResize
    • crWResize
    • crNEResize
    • crNWResize
    • crNSResize
    • crSEResize
    • crSWResize
    • crEWResize
  • To simplify mouse cursor handling, the class TW3MouseCursor, which is a static class, has been added to SmartCL.System.pas. It expose the following methods:
    • function ¬†CursorByName(const CursorName: string): TCursor
    • function ¬†NameByCursor(const Cursor: TCursor): String
    • function ¬†GetCursorFromElement(const Handle: TControlHandle): TCursor
    • procedure SetCursorForElement (const Handle: TControlHandle; const Cursor: TCursor)
  • TW3CustomControl have two new methods to deal with cursor changes. These are virtual and can be overriden:
    • ¬†function GetMouseCursor: TCursor;
    • procedure SetMouseCursor(const NewCursor: TCursor);
  • Basic device capabillity examination support has been added. The class¬†TW3DOMDeviceCapabilities has been added to SmartCL.System. This exposes the following methods and properties:
    • DevicePixelRatio: float
    • DisplayPixelsPerInch:¬†TPixelsPerInch
    • GetMouseSupport: boolean
    • GetTouchSupport: boolean
    • GetGamePadSupport: boolean
    • GetKeyboardSupported: boolean
    • GetDevicePixelRatio: float
    • GetDisplayPixelsPerInch: TPixelsPerInch
  • In order to make the VJL more architectually compatible with Delphi’s VCL and Freepascal’s LCL – TW3Component as name has been pushed back. TW3TagObj used to be the root class for visual components, followed by TW3Component, TW3MovableControl and finally TW3CustomControl. However, since we want to use TW3Component as a common non-visual control, this name was pushed back. So TW3TagObj now inherits from TW3Component, and TW3TagContainer has taken the place TW3Component once had. Here is the new inheritance chain
    • TW3CustomComponent
      • TW3Component
        • TW3TagObj
          • TW3TagContainer
            • TW3MovableControl
              • TW3GraphicControl
              • TW3CustomControl
  • TW3Component is now the basis for non-visual components, which opens up for a whole new set of controls that can be dragged onto a form or datamodule. Sadly Datamodules did not make it into this update, but it is the next logical step – hopefully we will have it in place with the IDE update that will appear after this.
    • Controllers will eventually be re-incarnated as TW3Component’s
    • Rouge classes will be implemented as TW3Components
    • Database classes will become non-visual TW3Components
    • Communication classes will become non-visual TW3Components
  • TW3Timer is moved to the unit System.Time.pas
  • TW3Timer now inherits from¬†TW3Component
  • The following procedures¬†have been deprecated and moved to System.Time.pas. Please use the corresponding methods in TW3Dispatch (Note: The w3_* methods will be deleted in the next update!):
    • w3_Callback = TW3Dispatch.Execute()
    • w3_SetInterval =¬†TW3Dispatch.SetInterval()
    • w3_ClearInterval = TW3Dispatch.ClearInterval()
    • w3_SetTimeout = TW3Dispatch.SetTimeOut()
    • w3_ClearTimeout = TW3Dispatch.ClearTimeOut()
  • TW3Dispatch, which is a class dealing with timing and scheduling, now support the following new methods:
    • class function JsNow: JDate;
    • class function Ticks: integer;
    • ¬†class function TicksOf(const Present: TDateTime): integer;
    • class function TicksBetween(const Past, Future: TDateTime): integer;
    • class procedure RepeatExecute(const Entrypoint: TProcedureRef; const RepeatCount: integer; const IntervalInMs: integer);
  • SQLite has been recompiled from C to JS and is now version
  • The SQLite units have been moved from SmartCL.SQLite to System.SQLite
  • The following SQLite classes have been given an overhaul:
    • TSQLiteDatabase
    • TSQLiteDBObject
    • TSQLiteRowValues
    • TSQLiteResult
    • TSQLParamData
    • TSQLitePair
    • TSQLiteParams
    • TSQLiteStatement
  • The SQLiteInitialize() global method is no longer requires and has been removed. When you include System.SQLite.pas in your project, the whole database engine is automatically linked and loaded into memory on execute. Use the SQLiteReady() global function to check if the database engine has loaded before use.
  • TReader, TWriter which was exclusively a re-implementation based on¬†LCL and Delphi has been fragmented. TReader and TWriter are now base classes that takes an interface as parameter in their constructor (IBinaryTransport). Both TStream and TBinaryData, which are the easiest ways of dealing with binary files and memory – implements the¬†IBinaryTransport interface.
  • TStreamReader and TStreamWriter has been added to the RTL, these are implemented in¬†System.Stream.Reader.pas and¬†System.Stream.Writer.pas. When working with streams, make sure you use TStreamReader and TStreamWriter. Using TReader and TWriter directly may cause problems if you are not intimately familiar with the RTL.
  • The unit System.Structure has been added to the RTL. This is to simplify working with structured records, abstracting you from the underlying format. The following classes are exposed in System.Structure:
    • EW3Structure [exception]
    • TW3Structure
      • procedure WriteString(Name: string; Value: string; const Encode: boolean);
      • procedure WriteInt(const Name: string; value: integer);
      • procedure WriteBool(const Name: string; value: boolean);
      • procedure WriteFloat(const Name: string; value: float);
      • procedure WriteDateTime(const Name: string; value: TDateTime);
      • function ReadString(const Name: string): string;
      • function ReadInt(const Name: string): integer;
      • function ReadBool(const Name: string): boolean;
      • function ReadFloat(const Name: string): float;
      • function ReadDateTime(const Name: string): TDateTime;
      • function Read(const Name: string): variant;
      • procedure Write(const Name: string; const Value: variant);
      • procedure Clear;
      • procedure SaveToStream(const Stream: TStream);
      • procedure LoadFromStream(const Stream: TStream);
      • procedure LoadFromFile(Url: string;¬†const callback: TW3StructureLoadedCallback);
  • The unit¬†System.Structure.JSON implements a TW3Structure class that stores data as JSON. The data is stored in memory as a single record, but naturally you can add further records as child properties – and then export the complete data as binary format to a stream, or as a single string through the ToString() method.
  • The unit System.Structure.XML implements a TW3Structure class which emits XML. Since the XML interface in browsers is both unstable and wildly different between vendors, we use our own BTree engine to manage the data. The class emits valid XML and will also deal with sub-records just as TW3JSonStructure.
  • The unit System.JSON has been added, which contains the following classes and methods. TJSON is a highly effective wrapper over the built-in JSON API, making it easier to work with JSON in general. The constructor is highly overloaded so you can wrap existing JS elements directly. This class is used by TW3JSONStructure to simplify its work:
    • TJSONObjectOptions
    • EJSONObject [exception]
    • TJSONObject
    • TJSON
  • The Delphi parser library TextCraft has been added to the RTL. When I write added that is not really correct. TextCraft was first written in Smart and then post converted to Delphi. But the RTL now has the latest update of this library, making advanced, recursive text-parsing possible:
    • System.Text.Parser.pas
    • System.Text.Parser.Words.pas
  • TW3Borders has been re-coded and optimized.
    • TW3Border.EdgeString() now use a lookup table for maximum efficiency
    • TW3Border’s edges now use a lookup table to quickly map types to strings
    • All superfluous reference testing has been removed, resulting in much faster and efficient code
    • Styles are no longer read via the older w3_read/write mechanisms but rather directly from the controlhandle
  • Two new classes has been added to deal with border-radius.
    • All controls can set the radius for all edges using the older TW3MovableControl.BorderRadius property, but this has now been expanded on. The following classes has been added. TW3BorderRadius can be accessed via the new TW3CustomControl.EdgeRadius property, which creates an instance on demand (first access):
      • TW3BorderEdgeRadius
      • TW3BorderEdgeTopRadius
      • TW3BorderEdgeBottomRadius
      • TW3BorderRadius
  • TStringBuilder has been added to System.Type. It deviates some from the Lazarus and Delphi variations because it adds functions that actually makes sense ! ūüôā
  • All custom controls have a cool background class that allows you to set color, add images and export pixmaps. A new class called¬†TW3ControlBackgroundSize has been added to this (TW3CustomControl.Background.Size) making things even easier. Especially detecting if a background is a graphic and its true size (!)
    • function ¬†BackgroundIsImage: boolean;
    • property Mode: TW3ControlBackgroundSizeMode
    • property Width: integer;
    • property Height: integer;
  • TW3Constraints (inherits from TW3OwnedObject) has been added to the RTL. This is a class that deals with size constraints for controls. Please note that this is experimental (!) When active it forces size restrictions much like the VCL and LCL — but it can cause havoc in a design that auto-scales (!). It implements the following:
    • property Enabled: boolean
    • property MinWidth: integer
    • property MinHeight: integer
    • property MaxWidth: integer
    • property MaxHeight: integer
    • procedure ¬† ApplyToOwner
    • function GetMaxWidth: integer;
    • function GetMaxHeight: integer;
    • procedure SetMaxWidth(const NewMaxWidth: integer);
    • procedure SetMaxHeight(const NewMaxHeight: integer);
    • function GetMinWidth: integer;
    • function GetMinHeight: integer;
    • procedure SetMinWidth(aValue: integer);
    • procedure SetMinHeight(aValue: integer);
    • procedure ¬† SetEnabled(const NewValue: boolean); virtual;
  • Event classes has finally been added! Need another OnClick event? just Create an event object and attach it to your control. The following event classes are now in SmartCL.Events :
    • TW3DOMEvent
    • TW3StandardDOMEvent
    • TW3MouseEnterEvent
    • TW3MouseLeaveEvent
    • TW3MouseDownEvent
    • TW3MouseMoveEvent
    • TW3MouseUpEvent
    • TW3ElementRemovedEvent
    • TW3ElementAddedEvent
    • TW3ElementContextMenuEvent
    • TW3ElementClickEvent
    • TW3ElementDblClickEvent
    • TW3ElementMouseOverEvent
    • TW3ElementKeyDownEvent
    • TW3ElementKeyPressEvent
    • TW3ElementKeyUpEvent
    • TW3ElementChangeEvent
    • TW3ElementMouseWheelEvent
    • TW3DOMEventAPI
      • class procedure RegisterEvent(Handle: TControlHandle; EventName: string; EventHandler:TW3JSEventHandler; Mode: TW3DOMEventMode); static;
      • class procedure UnRegisterEvent(Handle: TControlHandle; EventName: string; EventHandler:TW3JSEventHandler; Mode: TW3DOMEventMode); static;
  • Since events are not DOM or browser bound, they also occur in node.js and other JavaScript virtual machines (and you can also register your own events just like you do in Delphi or C#). As such I added System.Events.pas which contains the basic functionality for OOP events. The following classes and methods are added:
    • TW3SystemEventObject
      • procedure Attach(NameOfEvent: string);
      • procedure Detach;
      • property ¬†Attached: boolean
      • property ¬†EventName: string
  • TW3CustomBrowserAPI.Styles references “window.styles” which is no longer supported by browsers. This has been updated to “”
  • BrowserAPI() now expose key browser objects as actual class objects. The following objects are exposed as handles only (as they have been for some time):
    • Document
    • Body
    • Window
    • Styles
    • Console
    • Navigator
    • Self
    • Event
  • Besides the above handles, we now expose direct access to the mapped class objects directly. The W3C units have been updated to reflect modern browsers (so the objects have the latest methods exposed):
    • DocumentObject: JDocument
    • BodyObject: JHTMLElement
    • WindowObject: JWindow
    • StylesObject: JCSSStyleDeclaration
    • NavigatorObject: JNavigator
    • EventObject: JEvent
  • Added missing W3C.localStorage unit file which expose the localstorage API. This can now be accessed via BrowserAPI().WindowObject.localStorage. It supports the following functions:
    • property ¬†key[const keyId: string]: variant
    • property ¬†length: integer
    • procedure setItem(const key: string; const Value: variant)
    • procedure removeItem(const key: string)
    • procedure clear
    • function ¬†valueOf: variant [* prototype]
    • function ¬†hasOwnProperty(const key: string): boolean¬†[* prototype]
  • TW3Image now has a fitstyle property which wraps the “object-fit” css style. This gives you finer control over how the image is presented inside the control (or the background of a control). The following presentation styles are supported:
    • ¬†fsNone
      Image will ignore the height and width of the parent and retain its original size.
    • fsFill
      This is the default value which stretches the image to fit the content box, regardless of its aspect-ratio.
    • fsContain
      Increases or decreases the size of the image to fill the box whilst preserving its aspect-ratio.
    • fsCover
      The image will fill the height and width of its box, once again maintaining its aspect ratio but often cropping the image in the process.
    • fsScaleDown
      The control will compare the difference between fsNone and fsContain in order to find the smallest concrete object size.
  • TW3Image now supports binary IO besides the common HTML src property. The following methods have been added to TW3Image:
    • function ¬†ToBuffer: TBinaryData;
    • function ¬†ToStream: TStream;
    • function ¬†ToDataUrl: string;
    • function ¬†ToImageData: TW3ImageData;
    • procedure LoadFromURL(aURL: String);
    • procedure LoadFromImageData(Const Data:TW3ImageData);
    • procedure LoadFromBinaryData(const Memory:TBinaryData);
    • procedure LoadFromStream(const Stream:TStream);
    • procedure Allocate(aWidth,aHeight:Integer);
  • TW3Image now expose 3 new properties that are very helpful. The PixelWidth and PixelHeight gives you the actual size of an image, regardless of scale or viewport proportions. This is handy when using the Allocate() method to create a pixel-buffer that matches an existing image:
    • property ¬†PixelWidth: integer
    • property ¬†PixelHeight: integer
    • property ¬†Complete: boolean
  • The following procedures and functions have been removed. Faster to assign and deal with events directly on the handle – no need for the extra call:
    • procedure w3_bind
    • procedure w3_bind2
    • procedure w3_unbind
    • procedure w3_unbind2
  • TStreamHelper has been added to SmartCL.System. It adds data objectification. Generating an internal URL to access the data via a link. These functions wraps the createObjectURL API ( The following methods are in the helper:
    • function ¬†GetObjectURL: string;
    • procedure RevokeObjectURL(const ObjectUrl: string);
  • TAllocationHelper has been added to SmartCL.System. It does exactly the same as TStreamHelper but for the memory class TAllocation (system.memory.allocation.pas).
  • TBinaryData which is a very flexible and fast memory buffer class (system.memory.buffer.pas), inherits from TAllocation – as such TAllocationHelper also affects this class.
  • The class¬†TW3URLObject, which is a static class, has been added to SmartCL.System.pas. It wraps the same API as TStreamHelper and TAllocationHelper, but operates independent of medium. This class also adds forced download methods – where you can start a “save as” of binary data (or any data) with a single call. The class interface contains the following:
    • class function ¬†GetObjectURL(const Text, Encoding, ContentType, Charset: string): string;
    • class function ¬†GetObjectURL(const Text: string): string;
    • class function ¬†GetObjectURL(const Stream: TStream): string;
    • class function ¬†GetObjectURL(const Data: TAllocation): string;
    • class procedure RevokeObjectURL(const ObjectUrl: string);
    • class procedure Download(const ObjectURL: string; Filename: string);
    • class procedure Download(const ObjectURL: string; Filename: string;
      const OnStarted: TProcedureRefId);
  • TW3CustomControl now have automatic ZIndex assignment. On creation a ZIndex value is automatically assigned to each control (auto-inc number). The following methods have been added for that value:
    • function ¬†GetZIndex: integer;
    • procedure SetZIndex(const NewZIndex: integer);
  • To better deal with z-order and the creation sequence of child elements, the following methods have been added to TW3CustomControl. This makes it easier to control how child elements stack and overlap:
    • function ¬†GetZOrderList(const Sort: boolean): TW3StackingOrderList;
    • function ¬†GetChildrenSortedByYPos: TW3TagContainerArray;
    • function ¬†GetChildrenSortedByXpos: TW3TagContainerArray;
  • TW3CustomControl’s Invalidate() method has previously done nothing. It has been present for TW3GraphicControl (which inherits from TW3CustomControl) as means of redrawing or refreshing graphics.
    Invalidate for non-graphic controls now calls resize() to update the layout. While coders should use BeginUpdate / EndUpdate, there are times when a call to Invalidate() is all you need.
  • Text-shadow, which is a very effective CSS effect for text, has been isolated in its own class (TW3TextShadow) and is now exposed as TW3CustomControl’s TextShadow property. The class is created on-demand and will not consume memory until used.
  • TW3TagStyle, a class that parses and allows you to add, check and remove CSS style-rules to your control has been updated. The previous parsing routine has been replaced by a much faster string.split() call – removing the need for the for/next loop used to extract styles previously. This class is exposed as TW3CustomControl’s “TagStyle” property. Like Text-Shadow it is created on demand.
    Note: This replaces the older “CssClasses” property which has now been deprecated.
  • The TW3AnimationFrame class has been moved from SmartCL.Components.pas to SmartCL.Animation.pas which seems more fitting.
  • TControlHandleHelper is a strict helper-class for TControlHandle, which is the handle type used for HTML elements in the DOM. Many of the rouge utility functions that were scattered around the RTL have now been isolated here. It now gives you the following functionality:
    • function Defined: boolean;
    • function UnDefined: boolean;
    • function Valid: boolean;
    • function Equals(const Source: TControlHandle): boolean;
    • function Ready: Boolean;
    • function GetChildById(TagId: string): TControlHandle;
    • function GetChildCount: integer;
    • function GetChildByIndex(const Index: integer): TControlHandle;
    • function GetChildOf(TagType: string; var Items: TControlHandleArray): boolean;
    • function GetChildren: TControlHandleArray;
    • function HandleParent: TControlHandle;
    • function HandleRoot: TControlHandle;
    • procedure ReadyExecute(OnReady: TProcedureRef);
    • procedure ReadyExecuteEx(const Tag: TObject; OnReady: TProcedureRefEx);
    • procedure ReadyExecuteAnimFrame(OnReady: TProcedureRef);
  • function w3_GetCursorCSSName,¬†w3_GetCursorFromCSSName has been removed from SmartCL.System.pas – use the methods in the static class TW3MouseCursor instead
  • w3_DOMReady,¬†w3_CSSPrefix and¬†w3_CSSPrefixDef has been removed from SmartCL.System.pas – use the methods in BrowserAPI instead
  • The RTL now has its own stylesheet classes. The unit SmartCL.CSS.StyleSheet.pas and SmartCL.CSS.Classes represents the CSS management units for the system.

    TSuperstyle (see below) generates animation styles on-the-fly and returns the name for it. You can add this name to a control with Control.TagStyle.add().

    TCSS is a helper class for building complex styles via code. TSuperstyle uses this to create the animation effects. Note that these two classes are meant as examples (!) SmartCL.CSS.StyleSheet contains the following classes:

    • TW3StyleSheet
      • property ¬† ¬†Handle: TControlHandle
      • property ¬† ¬†StyleSheet: JCSSStyleSheet
      • property ¬† ¬†StyleRules: JCSSRuleList
      • property ¬† ¬†Count: integer
      • property ¬† ¬†Items[const Index: integer]: string
      • class function ¬†CreateStyleId: string;
      • class function ¬†CreateStylesheetId: string;
      • class function ¬†CreateStyleElement: TControlHandle;
      • class procedure DisposeStyleElement(const Handle: TControlHandle);
      • class function DefaultStylesheet: TW3StyleSheet;
      • function GetSheetObject: THandle;
      • function GetRuleObject: THandle;
      • function GetCount: integer;
      • function GetItem(const Index: integer): string;
    • TSuperStyle
      • class function EdgeRound(Size: integer): string; overload;
      • class function EdgeRound(TopLeftP, TopRightP, BottomLeftP, BottomRightP: integer):String; overload;
      • class function EdgeTopaz: string;
      • class function EdgeAngaro: string;
      • class function AnimGlow(GlowFrom, GlowTo: TColor): string;
      • class procedure AnimStart(Handle: TControlHandle; animName: String);
    • TCSS
      • function KeyFrames: TCSS;
      • function From: TCSS;
      • function &To: TCSS;
      • function Enter: TCSS;
      • function Leave: TCSS;
      • function PercentOf(Value: integer): TCSS;
      • function IntOf(Value: integer): TCSS;
      • function ColorOf(Value: TColor): TCSS;
      • function &inc(Value: string): TCSS;
      • function CRLF: TCSS;
      • function OpenParam: TCSS;
      • function CloseParam: TCSS;
      • function Background: TCSS;
      • function BoxShadow(Left, Top, Right, Bottom: integer): TCSS;overload;
      • function BoxShadow(Left, Top, Right, Bottom: integer; Color:TColor):TCSS;overload;
      • function LinearGradientV(aFrom, aTo: TColor): TCSS;
      • function LinearGradientH(aFrom, aTo: TColor): TCSS;
      • function LinearGradientTL(aFrom, aTo: TColor): TCSS;
      • function LinearGradientTR(aFrom, aTo: TColor): TCSS;
      • function BeginComplexGradient(Angle: integer): TCSS;
      • function EndComplexGradient: TCSS;
      • function ColorPercent(PercentOf: integer; Color: TColor): TCSS;
      • function LinearGradientAngle(aFrom, aTo: TColor; const Angle: float): TCSS;overload;
      • function LinearGradientAngle(Colors: Array of TColor; const Angle: float): TCSS; overload;
      • function AnimationName(Name: string): TCSS;
      • function AnimationDuration(Secs, MSecs: integer): TCSS;
      • function AnimationInfinite: TCSS;
      • class function Make: TCSS;
      • function Assign(Value: string): TCSS;


A new concept has been added to the RTL, namely something called controllers. These are classes that attach to a control and either alter its behavior or exposes functionality that is not available by default.


This unit exposes the class TW3EdgeSenseController, which can be attached to any visual control. Once attached the controller will fire events whenever the mouse-pointer or touch is close to the border of the control. This is typically used by controls that is expected to be resized, like a grid header column.


This unit provides the following classes:

  • TW3SwipeControllerOptions
  • TW3SwipeRange
  • TW3SwipeController

The TW3SwipeController attaches itself to any visual control and will trigger an event if a swipe gesture is performed on the target control. Since gesures such as swipe is one of the most common gestures, it made sense to isolate this in particular.

This controller is presently used by one of the new components, TW3Win10Header, which is a html5 implementation of the Windows 10 mobile header. This is a good-looking control that allows you to swipe through categories, much like a page-control for Windows applications, but better suited for mobile designs.


This controller implements access to custom data attributes for any visual control. It is essentially the functionality of TW3ElementAttributes (unit: SmartCL.Attributes= but here implemented as a controller.

The class used by the RTL for this behavior today is TW3ElementAttributes, but this will be deprecated in the future in favour of the controller.


iScroll is now the default scrolling mechanism for visual Smart Mobile Studio applications. The new TW3ScrollWindow and TW3CustomScrollList visual classes all derive their fantastic accurate scrolling and movement capabilities from iScroll – which by many is regarded as the defacto JavaScript scrolling library.

To make iScroll easier to use when writing custom controls that don’t inherit from TW3ScrollWindow or TW3CustomScrollList – you can use the controller instead. Simply create an instance, attach it to the parent container (which contains the elements you want to scroll) and you pretty much have instant iOS / Android scrolling.

Note: $Libraries\IScroll\iScroll.js has been updated to iScroll 5.2.0, which works fine on older Android devices (there were some problems with iScroll before). I have also updated our class implementation to include ALL options, events and functionality.

New Visual Controls

Indeed. While more or more controls is going to be added once the IDE update is in place, we at least have a few new controls in place that can liven up your applications.

First of all, iScroll is now (as explained) the default scroll mechanism in Smart Mobile Studio. When you combine that with the already impressive list of effects (smartcl.effects.pas) writing controls that gives visual feedback when you touch them, that scroll smoothly with momentum, bounce and snap to – is now almost ridiculously simple.


First up is the long-awaited DB grid. This is a fast paced grid that can show thousands of elements without any significant speed penalty. This is because it creates the elements as they come into view – and it uses a very effective cache system to keep track of which elements (rows / cols) have been created, and which needs some attention.


It also allows you to resize and move columns as you would expect from a native grid, so hopefully this first incarnation is just what you expected.


Next we have the fancy Windows 10 mobile category header control. This is a touch driven, swipe responsive header that shows both a category and a small ingress text.


This is an excellent control to create with Application.Display as a parent. That way it remains on top regardless of form – and the user can quickly navigate through swipes.


We have also added a more lightweight label control. This is best suited for static text that don’t need horizontal alignment. It is a lot more resource friendly than TW3Label which is a composite custom control.

Ace editor control

Ace, the #1 Javascript code editor, akin to Delphi’s SynEdit or the popular Sublime editor, has likewise been added. This should make a lot of things easier, especially if you are creating front-end code for your cloud services (which you can now write in pristine node.js).



TW3LayoutControl is another nice addition. This is essentially a scrollbox with classical rulers top and left. Perfect for image display programs, paint programs, layout designers and similar tasks. You can override and adapt this heavily and make it the basis for a calendar grid if you like.

We have also completely updated, re-written and quality checked every single control in the RTL. They are now more robust, they update and synchronize with their ready-state more or less like native controls do – and I have spent quite some time making sure they behave as they should.

Oh and yes, there are more controls (this post is getting long).

NodeJS high-level classes

Without a doubt the feature that has received most attention in this update are the Node.JS high level classes and units.

The previous NodeJS namespace and project type gave you more or less the bare-bones of node.js. This could be quite confusing for developers coming straight from Delphi or Lazarus. Especially if you don’t really want to dive to deep into the world of JavaScript – but enjoy some abstraction and ease of use.

The new SmartNJ namespace, where the files also are prefixed with the sane, implements common classes for both clients and servers. Writing an HTTP server is for instance very simple – and the code is in many cases as close to the other server types as possible.

The idea is that if you know how to write one type of server, you should also be able to write other types as well; because they share the same ancestor and commonalities.

As of writing the following server types are supported:

  • UDP
  • HTTP
  • Websocket (WebSocketIO)

The class architecture looks more or less like this:

  • TNJCustomServer
    • TNJUDPService
      • TNJUDPServer
    • TNJHTTPServer
    • TNJWebSocketServer
  • TNJCustomClient
    • TNJUDPService
      • TNJUDPClient
    • TNJHttpClient
    • TNJWebSocketClient

Clients and servers have traditional auxillary objects, such as request and response objects:

  • TNJServerChildClass
    • TNJCustomServerRequest
      • TNJHttpRequest
    • TNJCustomServerResponse
      • TNJHttpResponse

The following units make up the SmartNJ namespace today:

  • SmartNJ.Filesystem
  • SmartNJ.Network.Bindings
  • SmartNJ.Network
  • SmartNJ.Server
  • SmartNJ.Server.Http
  • SmartNJ.Server.Udp
  • SmartNJ.Server.WebSocket
  • SmartNJ.Streams
  • SmartNJ.System
  • SmartNJ.Udp
  • SmartNJ.WebSocket

Unified filesystem

In the previous versions of the RTL we presented several ways to store information. We had thin wrappers over cookies, local storage and filestorage. You could also use one of the 3 database engines to store data (sandboxed).

These unit still ship with the RTL, so should you want to pick one in particular that is of course not a problem. But in order to streamline and make IO as uniform as possible, I have introduced the notion of a standard “filesystem”.

The filesystem base-class can be found (as expected) in the system.filesystem.pas file. This contains the abstract class that makes up the most common filesystem operations.

NodeJS gives you a filesystem class that has direct access to the real files and folders, so be careful when you use that. As expected this filesystem implementation can be found under SmartNJ.Filesystem.pas.

And last but not least you will find a filesystem unit for visual browser applications, under SmartCL.Filesystem.pas.

The idea here is that you can write the exact same code and it will work regardless of which platform you run on.The same code you write for node.js will then save or load data in the browser as well.

This system will be expanded to include Cordova Phonegap, NodeWebkit (a hybrid post-compiler to make desktop applications) and embedded platforms.

Note: NodeJS is special in that it gives you both an asynchronous filesystem and blocking filesystem. If you want to use the blocking version, simply access it via the blocking interface (see unit file). But we strongly suggest that you avoid this since that will have a huge impact on performance. You must never use the blocking IO interface on servers, expect perhaps during startup Рit will completely undermine the node.js runtime scheme and yield terrible performance.

Database support

This has been a pressing issue for quite some time, and while we are close, we still need to add more infrastructure before we can wrap the engines we want. Although classes will be available soon – being able to visually hook up data in common RAD style is what we want.

For that to happen I need the following features in the IDE:

  • Datamodules
  • Designer drop-zone for non-visual components
  • Design support for property mapping

Without these features database support under node.js will be flawed at best. But fret not, it is being worked on and we are presently looking at the following engines:

Client side we will provide the same DB API, but here it will wrap the existing engines:

  • WebSQL [deprecated by W3C]
  • SQLite [default]
  • TW3Dataset
  • IndexDB

The reason this is more complicated than it may look is first of all because IndexDB and MongoDB are object based databases, not SQL based. So the architecture really needs property mapping and the IDE to back it up. Naturally it can be done in pure code (which we have started) but the IDE with the built-in database designer is what will make this more sane to work with.

Action support

Yes, finally it is here. TCustomAction and TAction has been added to the RTL, and appropriate controls now expose an Action property that you can assign to.

Again we need the next update before this becomes more easy to work with. You need to be able to drop a TW3ActionManager on your form or datamodule, and then assign that via the property inspector to the control.

The IDE will automatically generate the “glue” code on compile for you, and it will execute as a part of your {$I ‘form: impl’} section and set things up.

Right now you have to create and assign actions manually — but at least it’s finally in place. Which is really good because that allows me to write default-actions for various tasks just like you have in Delphi, C++ builder and Lazarus.

Final words

This has been a preview, not the full load. There are many other changes to the codebase, some of the changes quite radical. Hopefully you find this interesting and will enjoy using it as much as we have enjoyed creating it.

Things that havent been covered yet are:

  • Pixi.js
  • Plumb.js
  • Stacktrace support
  • Codec framework
  • eSpeak
  • Vector graphics display control
  • Support for Scetchpad 3d models
Loading HD 3d models into your smart applications is now possible (and easy). Stills doesnt do this model justice ..

Loading HD 3d models into your smart applications is now possible (and easy). Stills doesnt do this model justice ..

And yes, I have also added support for asset management. This wont be fully visible before the IDE update, but being able to pre-load pictures, sounds and resources before your application starts is now simplicity itself. As a bonus we also added support for Require() which is more or less the de-facto JavaScript way of loading assets (and more) these days. You even get a sweet callback when its done or when something goes wrong.

Stay tuned! I’m working as fast as I can


  1. February 6, 2017 at 9:26 am

    Hi Jon,

    “Amos” in a cube. –> Spiritual Brother. ūüôā
    –> Perhaps implement a kind of “AMAL” in a next Smart relase ? ūüėČ
    Impressive work. Keep it up !

    • February 6, 2017 at 6:58 pm

      Actually started on remaking Amos in Smart. Got the ide and parts of the bytecode engine ready ūüôā

  2. February 6, 2017 at 6:13 pm

    I think it would be really useful a Kitchen Sink example showing up all the features.

  1. No trackbacks yet.

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: