Archive
Raspberry PI 4 at last!
It was with astonishment that I opened up my browser this morning to read some daily IT news, only to discover that the Raspberry PI v4 has finally arrived! And boy what a landslide update to the 3.x family it is!
Three times the fun
There are plenty of sites that entertains page-up and page-down with numbers, but I will save all that for an article where I have the physical kit in my posession. But looking at the preliminaries I think it’s safe to say that we are looking at a solid 3x the speed of the older yet capable PI 3b+.

The PI returns, and what a joy it is!
While the 3x speed boost is enough to bump the SoC up, from entertaining to serious for business applications – it’s ultimately the memory footprint that will make all the difference. While the Raspberry PI is probably the most loved SBC (single board computer) of all time, it’s always been cut short due to lack of memory. 512 megabyte can only do so much in 2019, and even the slimmest of Linux distributions quickly consumes more ram that older versions could supply.
VideoCore 6, two screens and 4k video
The new model ships in three different configurations, with 1, 2 and 4 gigabytes of ram respectively. I strongly urge people to get the 4Gb version, because with that amount of memory coupled with a good solid-state-disk, means you can enable a proper swap-partition. No matter how fast a SoC might be, without memory to compliment it – the system simply wont be able to deliver on its potential. But with 4Gb, a nice solid state disk (just use a SSD-To-USB with one of the sexy new USB 3.x ports) and you are looking at an OK mini-computer capable of most desktop applications.
I have to admit I never expected the PI to ship with support for two monitors, but lo-and-behold, the board has two mini-hdmi out ports! The board is also fitted with the VideCore 6 rather than VideoCore 4.
Not missing the boat with Oxygene and Elements
One of the most frustrating episodes in the history of Delphi, is that we never got a Delphi edition that could target Raspberry PI (or ARM-Linux in general). It was especially frustrating since Allen Bauer actually demonstrated Delphi generating code that ran on a PI in 2012. The result of not directly supporting the PI, even on service level without a UI layer – is that Delphi developers have missed the IOT market completely.
Before Delphi developers missed the IOT revolution, Delphi also missed out on iOS and Android. By the time Delphi developers could target any of these platforms, the market was completely saturated, and all opportunities to make money was long gone. In other words, Delphi has missed the boat on 3 revolutionary platforms in a row. Something which is borderline unforgivable.
The good news though is that Oxygene, the object-pascal compiler from RemObjects, supports the Raspberry PI SoC. I have yet to test this on v4, but since the PI v4 is 100% backwards compatible I don’t see any reason why there should be any issues. The code generated by Oxygene is not bound to just the PI either. As long as it runs on a debian based distro, it should run just fine on most ARM-Linux SoC’s that have working drivers.
And like I have written about elsewhere, you can also compile for WebAssembly, running either in node.js or in the browser — so there are plenty of ways to get your products over!
Stay tuned for the lineup
This week im going to do a lot of testing on various ARM devices to find out just how many SBC’s Oxygene can target, starting with the ODroid N2. But for Raspberry PI, that should be a slam-dunk. Meaning that object-pascal developers can finally make use of affordable off-the-shelves parts in their hardware projects.
As of writing im preparing the various boards I will be testing. We have the PI 3b+, the Tinkerboard from ASUS, NanoPI, Dragonboard, Odroid XU4 – and the latest power-board, the ODroid N2. Out of these offerings only the N2 is en-par with the Raspberry PI v4, although I suspect the Videocore 6 GPU will outperform the Mali G52.
The Amiga ARM project
This has been quite the turbulent week. Without getting into all the details, a post that I made with thoughts and ideas for an Amiga inspired OS for ARM escaped the safe confines of our group, Amiga Disrupt, and took on a life of its own.
This led to a few critical posts being issued publicly, which all boiled down to a misunderstanding. Thankfully this has been resolved and things are back to normal.
The question on everyone’s lips now seem to be: did Jon mean what he said or was it just venting frustration? I thought I made my points clear in my previous post, but sadly Commodore USA formulated a title open for interpretation (which is understandable considering the mayhem at the time). So let’s go thrugh the ropes and put this to rest.
Am I making an ARM based Amiga inspired OS?
Hopefully I don’t have to. My initial post, the one posted to the Amiga Disrupt comment section (and mistaken for a project release note), had a couple of very clear criteria attached:
If nothing has been done to improve the Amiga situation [with regards to ARM or x86] by the time I finish Amibian.js (*), I will take matters into my own hand and create my own alternative.
(*) As you probably know, Amibian.js is a cloud implementation of Amiga OS, designed to bring Amiga to the browser. It is powered by a node.js application server; a server that can be hosted either locally (on the same machine as the html5 client) or remotely. It runs fine on popular embedded devices such as Tinkerboard and ODroid, and when run in a full-screen browser with no X or Windows desktop behind it – it is practically indistinguishable from the real thing.
We have customers who use our prototype to deliver cloud based learning for educational institutions. Shipping ready to use hardware units with pre-baked Amibian.js installed is perfect for schools, libraries, museums, routers and various kiosk projects.
Note: This project started years before FriendOS, so we are not a clone of their work.
Obviously this is a large task for one person, but I have written the whole system in Smart Mobile Studio, which is a product our company started some 7 years ago, and that now has a team of six people behind it. In short it takes object pascal code such as Delphi and Freepascal, and compiles this to JavaScript. Suitable for both the browser and NodeJS. It gives you a full IDE with form designer, drag & drop visual components and a wast and rich RTL (run-time library) which naturally saves me a lot of time. So this gives me an edge over other companies working with similar technology. So while it’s a huge task, it’s leveraged considerably by the toolchain I made for it.
So am I making a native OS for ARM or x86? The short answer: I will if the situation havent dramatically improved by the time Amibian.js is finished.
Instead of wasting years trying to implement everything from scratch, Pascal Papara took the Linux kernel and ran with it. So Aeros boots by virtue of the Linux Kernel, but jumps straight into Aros once the drivers has loaded
If you are thinking “so what, who the hell do you think you are?” then perhaps you should take a closer look at my work and history.
I am an ex Quartex member, which was one of the most infamous hacking cartels in europe. I have 30 years of software development behind me, having worked as a professional developer since the age of 17. I have a history of taking on “impossible” projects and finding ways to deliver them. Smart Mobile Studio itself was deemed impossible by most Delphi developers; It was close to heresy, triggering an avalanche of criticism for even entertaining the idea that object pascal could be compiled to JavaScript. Let alone thrive on JSVM (JavaScript Virtual Machine).

Amibian.js runs javascript, but also bytecodes. Here showing the assembler prototype
You can imagine the uproar when our generated JavaScript code (compiled from object pascal) actually bested native code. I must admit we didn’t expect that at all, but it changed the way Delphi and object pascal developers looked at the world – for the better I might add.
What I am good at, is taking ordinary off the shelves parts and assembling them in new and exciting ways. Often ways the original authors never intended; in order to produce something unique. My faith is not in myself, but in the ability and innate capacity of human beings to find solutions. The biggest obstacle to progress is ultimately pride and fear of losing face. Something my Buddhist training beat our of me ages ago.
So this is not an ego trip, it’s simply a coder that is completely fed-up with the perpetual mismanagement that has held Amiga OS in captivity for two decades.
Amiga OS is a formula, and formulas are bulletproof
People love different aspects of the same thing – and the Amiga is no different. For some the Amiga is the games. Others love it for its excellent sound capabilities, while some love it for the ease of coding (the 68k is the most friendly cpu ever invented in my book). And perhaps all of us love the Amiga for the memories we have. A harmless yet valuable nostalgia of better times.

Amiga OS 3.1 pimped up, running on Amibian [native] Raspberry PI 3b
We are talking about a design that delivers a multimedia driven, window based desktop 10 years before the competition. A desktop that would thrive in as little as 512 kb of ram, with fast and reliable pre-emptive multitasking.
I don’t think people realize or understand the true value of Amiga OS. It’s not in the games (although games is definitively a huge part of the experience), the hardware or the programs. The reason people have been fighting bitterly over Amiga OS for a lifetime, is because the operating system architecture or “formula” is unmatched to this very day.
Can you imagine what a system that thrives under 512 KB would do to the desktop market? Or even better, what it could bring to the table for embedded and server technology?
And this is where my frustration soars up. Even though we have OS 4.1, we have been forced to idly stand by and watch, as mistake after mistake is being made. opportunities that are ripe for the taking (some of them literally placed on the doorstep of Hyperion), have been thrown by the wayside time and time again.
And they are not alone. Aros and Morphos has likewise missed a lot of opportunities. Both opportunities to generate income and secure development as well as embracing new technology. Although I must stress that I sympatize with Aros since they lack any official funding. Morphos is doing much better using a normal, commerical license.
Frustration, the mother of invention
When the Raspberry PI was first released I jumped of joy. Finally a SBC (single board computer) with enough power to run a light version of Amiga OS 4.1, with a price tag that everyone can live with. I rushed over to Hyperion to see if they had issued a statement about the PI, but nothing could be found. The AEON site was likewise empty.
The PI version 2 came and went, still no sign that Hyperion would capitalize on the situation. I expected them to issue a “Amiga OS 4.1 light” edition for ARM, which would put them on the map and help them establish a user base. Without a user base and fresh blood there is no chance in hell of selling next generation machines in large enough quantities to justify future development. But once again, opportunity after oppertunity came and went.

Sexy, fast and modern: Amiga OS 4.1 would do wonders on ARM
Faster and better suited SBC’s started to turn up in droves: The ODroid, Beaglebone black, The Tinkerboard, The Banana PI – and many, many others. When the SnapDragon IV CPU’s shipped on a $120 SBC, which is the same processor used by Samsung Galaxy 6S, I was sure Hyperion would wake up and bring Amiga OS to the masses. But not a word.
Instead we were told to wait for the Amiga x5000 which is based on PPC. I have no problem with PPC, it’s a great platform and packs a serious punch. But since PPC no longer sell to mainstream computer companies like it used to, the price penalty would be nothing short of astronomical. There is also the question of longevity and being able to maintain a PPC based system for the forseeable future. Where exactly is PPC in 15 years?
Note: One of the reasons PPC was selected has to do with coding infrastructure. PPC has an established standard, something ARM lacked at the time (this was first established for ARM in 2014). PPC also has an established set of development platforms that you can build on, with libraries and pre-fab modules (pre fabricated modules, think components that you can use to quickly build what you need) that have been polished for two decades now. A developer who knows PPC from the Amiga days will naturally feel more at home with PPC. But sadly PPC is the past and modern development takes place almost exclusively on ARM and x86. Even x86 is said to have an expiration date now.
The only group that genuinely tried to bring Amiga OS to ARM has been the Aros team. They got their system compiled, implemented some rudimentary drivers (information on this has been thin to say the least) and had it booting natively on the Raspberry PI 3b. Sadly they lacked a USB stack (remember I mentioned pre-fab modules above? Well, this is a typical example. PPC devtools ship with modules like this out of the box) so things like mouse, keyboard and external peripherals wouldn’t work.
And like always, which is the curse of Amiga, “something came up”, and the whole Raspberry PI / ARM initiative was left for dead. The details around this is sketchy, but the lead developer had a personal issue that forced him to set a new direction in life. And for some reason the other Aros developers have just continued with x86, even though a polished ARM version could have made them some money, and helped finance future development. It’s the same story, again and again.
But then something amazing happened! Out of the blue came Pascal Papara with a new take on Aros, namely AEROS. This is a distro after my own heart. Instead of wasting years trying to implement everything from scratch, Pascal took the Linux kernel and ran with it. So Aeros boots by virtue of the Linux Kernel, but jumps straight into Aros once the drivers has loaded. And the result? It is the fastest desktop you will ever experience on ARM. Seriously, it runs so fast and smooth on the Raspberry PI that you could easily mistake it for a $450 Intel i3.
Sadly Pascal has been more or less alone about this development. And truth be told he has molded it to suit his own needs rather than the consumer. Since his work includes a game machine and some Linux services, the whole Linux system is exposed to the Aros desktop. This is a huge mistake.
Using the Linux kernel to capitalize on the thousands of man hours invested in that, not to mention the linux driver database which is massive, is a great idea. It’s also the first thing that came into my mind when contemplating the issue.
But when running Aros on top of this, the Linux aspect of the system should be abstracted away. Much like what Apple did with Unix. You should hardly notice that Linux is there unless you open a shell and start to investigate. The Amiga filesystem should be the only filesystem you see when accessing things from the desktop, and a nice preferences option for showing / hiding mounted Linux drives.
My plans for an ARM based Amiga inspired OS
Building an OS is not a task for the faint of heart. Yes there is a lot of embedded / pre-fab based systems to pick from out there, but you also have to be sensible. You are not going to code a better kernel than Linus Torvalds, so instead of wasting years trying to catch up with something you cannot possibly catch up with – just grab the kernel and make it work for us.
The Linux kernel solves things such as process contexts, “userland” vs “kernel space” (giving the kernel the power to kill a task and reclaim resources), multitasking / threading, thread priorities, critical sections, mutexes and global event objects; it gives us IPC (inter process communication), disk IO, established and rock solid sound and graphics frameworks; and last but perhaps most important: free access to the millions of drivers in the Linux repository.

Early Amibian.js login dialog
You would have to be certified insane to ignore the Linux Kernel, thinking you will somehow be the guy (or group) that can teach Linus Torvalds a lesson. This is a man who has been writing kernel’s for 20+ years, and he does nothing else. He is surrounded by a proverbial army of developers that code, test, refactor and strive to deliver optimal performance, safety and quality assurance. So sorry if I push your buttons here, but you would be a moron to take him on. Instead, absorb the kernel and gain access to the benefits it has given Linux (technically the kernel is “Linux”, the rest is GNU – but you get what I mean).
With the Linux kernel as a foundation, as much as 50% of the work involved in writing our OS is finished already. You don’t have to invent a driver API. You dont have to invent a new executable format (or write your own ELF parser if you stick with the Linux executable). You can use established compilers like GCC / Clang and Freepascal. And you can even cherry pick some low-level packages for your own native API (like SDL, OpenGL and things that would take years to finish).
But while we want to build our house on rock, we don’t want it to be yet another Linux distro. So with the kernel in place and a significant part of our work done for us, that is also where the similarities end.
The end product is Amiga OS, which means that we need compatibility with the original Amiga rom libraries (read: api). Had we started from scratch that would have been a tremendous effort, which is also why Aros is so important. Because Aros gives us a blueprint of how they have implemented these API’s.
But our main source of inspiration is not Aros, but Amithlon. What we want to do is naturally to pipe as much as we can from the Amiga API’s back to the Linux kernel. Things like device detection, memory allocation, file IO, pipes, networking — our library files will be more thin wrappers that expose Amiga compatible calls; methods that calls the Linux Kernel to do the job. So our Amiga library files will be proxy objects whenever possible.

Amithlon, decades ahead of it’s time
The hard work is when we get to the window manager, or Intuition. Here we can’t cheat by pushing things back to Linux. We don’t want to install X either (although we can render our system into the X framebuffer if we like), so we have to code a window manager. This is not as simple as it sounds, because our system must operate with multiple cores, be multi threaded by design and tap into the grand scheme of things. Things like messages (which is used by applications to respond to input) must be established, and all the event codes from the original Amiga OS must be replicated.
So this work wont be easy, but with the Linux kernel as a foundation – the hardest task of all is taken care of. The magic of a kernel is that of process management and task switching. This is about as hard-core as you can get. Without that you can almost forget the rest. But since we base our system on the Linux kernel, we can focus 100% on the real task – namely to deliver a modern Amiga experience, one that is platform independent (read: conforms to standard Linux and can thus be recompiled and run anywhere Linux can run), preserves as much of the initial formula as possible – and can be successfully maintained far into the future.
By pushing as much of our work as possible into user-space (the process space where ordinary programs run, the kernel runs outside this space and is thus unaffected when a program crashes) and adhering to the Linux kernel beneath the bonnet, we have created a system that can be re-compiled anywhere Linux is. And it can be done so without any change to our codebase. Linux takes care of things like drivers, OpenGL, Sound — and presents to us a clean API that is identical on every platform. It doesn’t matter if it’s ARM, PPC, 68k, x86 or MIPS. As long as we follow the standards we are home free.
Last words
I hope all of this clears up the confusion that has surrounded the subject this week. Again, the misunderstanding that led to some unfortunate posts has been resolved. So there is no negativity, no drama and we are all on the same page.

Early Amibian.js prototype, running 68k in the browser via uae.js optimized
Just remember that I have set some restrictions for my involvement here. I sincerely hope Hyperion and the Aros development group can focus on ARM, because the community needs this. While the Raspberry PI might seem too small a form-factor to run Aros, projects like Aeros have proven just how effective the Amiga formula is. I’m sure Hyperion could find a powerful ARM SOC in the price range of $120 and sell a complete package with profit for around $200.
What the Amiga community needs now, is not expensive hardware. The userbase has to be expanded horizontally across platforms. Amiga OS / Aros has much to offer the embedded market which today is dominated by overly complex Linux libraries. The Amiga can grow laterally as a more user-friendly alternative, much like Android did for the mobile market. Once the platform is growing and established – then custom hardware could be introduced. But right now that is not what we need.
I also hope that the Aros team drops whatever they are working on, fork Pascal Paparas codebase, and spend a few weeks polishing the system. Abstract away the Linux foundation like Apple have done, get those sexy 32 bit OS4 icons (Note: The icons used by Amiga OS 4 is available for free download from the designer’s website) and a nice theme that looks similar to OS 4 (but not too similar). Get Lazarus (the freepascal IDE) going and ship the system with a ready to use Pascal, C/C++ and Basic development environments. Bring back the fun in computing! The code is already there, use it!
Just take something simple, like a compatible browser. It’s actually not that simple, both for reasons of complexity and how memory is handled by PPC. With a Linux foundation things like Chromium Embedded could be inked into the Amiga side of things and we would have a native, fast, established and up-to-date browser.
At the same time, since we have API level compatability, people can recompile their Aros and Morphos applications and they would run more or less unchanged.
I really hope that my little protest here, if nothing else, helps people realize that there are viable options readily at hand. Commodore is not coming back, and the only future this platform has – is the one we make. So people have to ask themselves how much they want a future.
If the OS gains momentum then there will be grounds for investors to look at custom hardware. They can then choose off the shelves parts that are inexpensive to cover the normal functionality you expect in a modern computer – which more resources can go into custom hardware that sets the system apart. But we cant start there. It has to be built up brick by brich, standing on the shoulders of giants.
OK, rant over 🙂
Why buy a Vampire accelerator?
With the Amiga about to re-enter the consumer market, a lot of us “old timers” are busy knocking dust of our old machines. And I love my old machines even though they are technically useless by modern standards. But these machines have a lot of inspiration in them, especially if you write code. And yes there is a fair bit of nostalgia involved in this, there is no point in lying about any of this.
I mean, your mobile phone is probably 100 times faster than a vintage Amiga. But like you will discover with the new machines that are about to hit the market, there is more to this computer than you think. But vintage Amiga? Sadly they lack the power to anything useful [in the “modern” sense].
Enter the vampire
The Vampire is a product that started shipping about a year ago. It’s a FPGA based accelerator, and it’s quite frankly turning the retro scene on its head! Technically it’s a board that you just latch onto the CPU socket of your classical Amiga; it then takes over the whole machine and replace the CPU and chipset with its versions of these. Versions that are naturally a hell of a lot faster!
The result is that the good old Amiga is suddenly beefy enough to play Doom, Quake, MP3 files and MPG video (click here to read the datasheet). In short: this little board gives your old Amiga machine a jolt of new life.
Emulation vs. FPGA
Im not going to get into the argument about FPGA not being “real”, because that’s not what FPGA is about. Nor am I negative to classical hardware – because I own a ton of old Amiga gear myself. But I will get in your face when it comes to buying a Vampire.
Before we continue I just want to mention that there are two models of the vampire. There is the add-on board I have just mentioned which is again divided into different models for various Amiga versions (A600, A500 so far). The second model is a completely stand-alone vampire motherboard that wont even need a classic Amiga to work. It will be, for all means and purposes, a stand alone SBC (single board computer) that you just hook up power, video, storage and mouse – and off you go!
This latter version, the stand-alone, is a project I firmly believe in. The old boards have been out of production since 1993 and are getting harder to come by. And just like people they will eventually break down and stop working. There is also price to consider because getting your 20-year-old A500 fixed is not easy. First of all you need a specialist that knows how to fix these old things, and he will also need parts to work with. Since parts are no longer in production and homebrew can only go so far, well – a brand new motherboard that is compatible in every way sounds like a good idea.
There is also the fact that FPGA can reach absurd speeds. It has been mentioned that if the Vampire used a more expensive FPGA modules, 68k based Amiga’s could compete with modern processors (Source: https://www.generationamiga.com/2017/08/06/arria-10-based-vampire-could-reach-600mhz/). Can you imagine a 68k Amiga running side by side with the latest Intel processors? Sounds like a lot of fun if you ask me !
But then there is emulation. Proper emulation, which for Amiga users can only mean one thing: UAE in all its magnificent diversity and incarnations.
Nothing beats firing up a real Amiga, but you know what? It has been greatly exaggerated. I recently bought a sexy A1000 which is the first model that was ever made. This is the original Amiga, made way back before Commodore started to mess around with it. It cost me a small fortune to get – but hey, it was my first ever Amiga so I wanted to own one again.
But does it feel better than my Raspberry PI 3b powered A500? Nope. In fact I have only fired up the A1000 twice since I bought it, because having to wait for disks to load is just tedious (not to mention that you can’t get new, working floppy disks anymore). Seriously. I Love the machine to bits but it’s just damn tedious to work on in 2017. It belongs to the 80s and no-one can ever take away its glory or it’s role in computer history. That achievement stands forever.
High Quality Emulation
If you have followed my blog and Amiga escapades, you know that my PI 3b based Amiga, overclocked to the hilt, yields roughly 3.2 times the speed of an Amiga 4000/040. This was at one point the flagship Commodore computer. The Amiga 4000’s were used in movie production, music production, 3d rendering and heavy-duty computing all over the world. And the 35€ Raspberry PI gives you 3.2 times the power via the UAE4Arm emulator. I don’t care what the vampire does, the PI will give it the beating of its life.

My retrofitted Raspberry PI 3b Amiga. Serious emulation at high speed allowing for software development and even the latest Freepascal 3.x compiler
Then suddenly, out of the blue, Asus comes along with the Tinkerboard. A board that I hated when it first came out (read part-1 here, part-2 here) due to its shabby drivers. The boards have been collecting dust on my office shelf for six months or so – and it was blind luck that i downloaded and tested a new disk image. If you missed that part you can read the full article here.
And I’m glad I did because man – the Tinkerboard makes the Raspberry PI 3b look like a toy! Asus has also adjusted the price lately. It was initially priced at 75€, but in Norway right now it retails for about 620 NKR – or 62€. So yes, it’s about twice the price of the PI – but it also gives you twice the memory, twice the graphics performance, twice the IO performance and a CPU that is a pleasure to work with.
The Raspberry PI 3b can’t be overclocked to the extent the model 1 and 2 could. You can over-volt it and tweak the GPU and memory and make it run faster. But people don’t call that “overclock” in the true sense of the word, because that means the CPU is set to run at speeds beyond the manufacturing specifications. So with the PI 3b there is relatively little you can do to make it run faster. You can speed it up a little bit, but that’s it. The Tinkerboard can be overclocked to the hilt.

The A1222 motherboard is just around the corner [conceptual art]
In short: if you fork out 70€ you get a SBC that runs rings around both the vampire and the Raspberry PI 3b. If we take height for some Linux services and drivers that have to run in the background, 3.2 x 3 = 9.6. Lets round that off to 9 since there will be performance hits by the background services. But still — 70€ for an Amiga that runs 9 times faster than A4000 @ MC68040 cpu ? That should blow your mind!
I’m sorry but there has to be something wrong with you if that doesn’t get your juices flowing. I rarely game on my classic Amiga setup. I’m a coder – but with this kind of firepower you can run some of the biggest and best Amiga titles ever made – and the Tinkerboard wont even break a sweat!
You can’t afford to be a fundamentalist
There are some real nutbags in the Amiga community. I think we all agree that having the real deal is a great experience, but the prices we see these days are borderline insane. I had to fork out around 500€ to get my A1000 shipped from Belgium to Norway. Had tax been added on the original price, I would have looked at something in the 700€ range. Still – 500€ for a 20-year-old computer that can hardly run Workbench 1.2? Unless you add the word “collector” here you are in fact barking mad!
If you are looking to get an Amiga for “old times sakes”, or perhaps you have an A500 and wonder if you should fork out for the Vampire? Will it be worth the 300€ pricetag? Unless you use your Amiga on a daily basis I can’t imagine what you need a vampire for. The stand-alone motherboard I can understand, that is a great idea – but the accelerator? 300€?
I mean you can pay 70€ and get the fastest Amiga that ever existed. Not a bit faster, not something on second place – no – THE FASTEST Amiga that has ever existed. If you think playing MP3 and MPG media files is cool with the vampire, then you are in for a treat here because the same software will work. You can safely download the latest patches and updates to various media players on the classic Amiga, and they will run just fine on UAE4Arm. But this time they will run a hell of a lot faster than the Vampire.
You really can’t be a fundamentalist in 2017 when it comes to vintage computers. And why would you want to? With so much cool stuff happening in the scene, why would you want to limit your Amiga experience to a single model? Aros is doing awesome stuff these days, you have the x5000 out and the A1222 just around the corner. Morphos is stable and good on the G5 PPC — there has never been a time when there were so many options for Amiga enthusiasts! Not even during the golden days between 1989-1994 were there so many exciting developments.
I love the classic Amiga machines. I think the Vampire stand-alone model is fantastic and if they ramp up the fpga to a faster model, they have in fact re-created a viable computer platform. A 68080 fpga based CPU that can go head to head with x86? That is quite an achievement – and I support that whole heartedly.
But having to fork out this amount of cash just to enjoy a modern Amiga experience is a bit silly. You can actually right now go out and buy a $35 Raspberry PI and enjoy far better results than the Vampire is able to deliver. How that can be negative? I have no idea, nor will I ever understand that kind of thinking. How do any of these people expect the Amiga community to grow and get new, young members if the average price of a 20-year-old machine costs 500€? Which incidentally is 50€ more than a brand new A1222 PPC machine capable of running OS 4.
And with the Tinkerboard you can get 9 times the speed of an A4000? How can that not give you goosebumps!
People talk about Java and Virtual-Machines like its black magic. Well UAE gives you a virtual CPU and chipset that makes mince-meat of both Java and C#. It also comes with one of the largest software libraries in the world. I find it inconceivable that no-one sees the potential in that technology beyond game playing – but when you become violent or nasty over hardware, then I guess that explains quite a bit.
I say, use whatever you can to enjoy your Amiga. And if your perfect Amiga is a PI or a Tinkerboard (or ODroid) – who cares!
I for one will not put more money into legacy hardware. I’m happy that I have the A1000, but that’s where it stops for me. I am looking forward to the latest Amiga x5000 PPC and cant wait to get coding on that – but unless the Appollo crew upgrades to a faster FPGA I see little reason to buy anything. I would gladly pay 500 – 1000 € for something that can kick modern computers in the behind. And I imagine a lot of 68k users would be willing to do that as well. But right now PPC is a much better option since it gives you both 68k and the new OS 4 platform in one price. And for affordable Amiga computing, emulation is now of such quality that you wont really notice the difference.
And I love coding 68k assembler on my Amibian emulator setup. There is nothing quite like it 🙂
Where is PowerPC today?

Phase 5 PowerUP board prototype
Anyone who messed around with computers back in the 90s will remember PowerPC. This was the only real alternative for Intel’s complete dominance with the x86 CPU’s and believe me when I say the battle was fierce! Behind the PowerPC you had companies like IBM and Motorola, companies that both had (or have) an axe to grind with Intel. At the time the market was split in half – with Intel controlling the business PC segment – while Motorola and IBM represented the home computer market.
The moment we entered the 1990s it became clear that Intel and Microsoft was not going to stay on their side of the fence so to speak. For Motorola in particular this was a death match in the true sense of the word, because the loss of both Apple and Commodore represented billions in revenue.
What could you buy in 1993?
The early 90’s were bitter-sweet for both Commodore and Apple. Faster and affordable PC’s was already a reality and as a consequence – both Amiga machines and Mac’s were struggling to keep up.
The Amiga 1200 still represented a good buy. It had a massive library of software, both for entertainment and serious work. But it was never really suited for demanding office applications. It did wonders in video and multimedia development, and of course games and entertainment – but the jump in price between A1200 and A4000 became harder and harder to justify. You could get a well equipped Mac with professional tools at that range.
Apple on the other hand was never really an entertainment company. Their primary market was professional graphics, desktop publishing and music production (Photoshop, Pro-tools, Logic etc. were exclusive Mac products). When it came to expansions and ports they were more interested in connecting customers to industrial printers, midi devices and high-volume storage. Mac was always a machine for the upper class, people with money to burn; The Amiga dominated the middle-class. It was a family type computer.
But Apple was not a company in hiding, neither from Commodore or the Wintel threat. So in 1993 they introduced the Macintosh Quadra series to the consumer market. Unlike their other models this was aimed at home users and students, meaning that it was affordable, powerful and could be used for both homework and professional applications. It was a direct threat to upper middle-class that could afford the big box Amiga machines.

The 68k Macintosh Quadra came out in October of 1993
But no matter how brilliant these machines were, there was no hiding the fact that when it came to raw power – the PC was not taking any prisoners. It was graphically superior in every way and Intel started doubling the CPU speed exponentially year by year; Just like Moore’s law had predicted.
With the 486-DX2 looming on the horizon, it was game over for the old and faithful processors. The Motorola 68k family had been there since the late 70’s, it was practically an institution, but it was facing enemies on all fronts and simply could not stand in the way of evolution.
The PowerPC architecture
If you are in your 20’s you wont remember this, but back in the late 80’s early 90’s, the battle between computer vendors was indeed fierce. You have to take into consideration that Microsoft and Intel did a real number on IBM. Microsoft stabbed IBM in the back and launched Windows as a direct competitor for IBM’s OS2. When I write “stabbed in the back” I mean that literally because Microsoft was initially hired to create parts of OS/2. It was the typical lawsuit mess, not unlike Microsoft and Sun later, where people would pick sides and argue who the culprit really was.
As you can imagine IBM was both bitter and angry at Microsoft for stealing the home PC market in such a shameful way. They were supposed to help IBM and be their ally, but turned out to be their most fierce competitor. IBM had also created a situation where the PC was licensed to everyone (hence the term “ibm clone”) – meaning that any company could create parts for it and there was little IBM could do to control the market like they were used to. They would naturally get revenue from these companies in the form of royalties (and would later retire 99% of all their products. Why work when they get billions for doing nothing?), but at the time they were still in the game.
Motorola was in a bad situation themselves, with the 68k line of processors clearly incapable of facing the much faster x86 CPU’s. Something new had to be created to ensure their market share.
The result of this “marriage of necessity” was the PowerPC line of processors.

The Apple “Candy” Mac’s made PPC and computing sexy
Apple jumped on the idea. It was the only real alternative to x86. And you have to remember that – had Apple gone to x86 at that point, they would basically have fed the forces that wanted them dead. You could hardly make out where Microsoft started and Intel ended during the early 90s.
I’m going to spare you the whole fall and rebirth of Apple. Needless to say Apple came to the point where their branch of PowerPC processors caused more problems than they had benefits. The type of PowerPC processors Apple used generated an absurd amount of heat, and it was turning into a real problem. We see this in their later models, like the dual cpu G5 PowerMac where 40% of the cabinet is dedicated purely to cooling.
And yes, Commodore kicked the bucket back in 1994 so they never finished their new models. Which is a damn shame because unlike Apple they went with a dedicated RISC processor. These models did not suffer the heating problems the PPC’s used by Apple had to deal with.
Note: PPC and RISC are two sides of the same coin. PPC processors are RISC based, but naturally there exists hundreds of different implementations. To avoid a ton of arguments around this topic I treat PPC as something different from PA-RISC which Commodore was playing with in their Hombre “skunkworks” projects.
You can read all about Apple’s strain of PowePC processors here, and PA-RISC here.
PPC in modern computers?
I am going to be perfectly honest. When I heard that the new Amiga machines were based on PowerPC my reaction was less than polite. I mean who the hell would use PowerPC in our day and age? Surely Apple’s spectacular failure would stand as a warning for all time? I was flabbergasted to say the least.
The Amiga One came out and I didn’t even give it the time of day. The Sam440 motherboards came out, I couldn’t care less. It would have been nice to own one, but the price at the time and the lack of software was just to disproportionate to make sense.
And now there is the Amiga x5000 and a smaller, more affordable A1222 (a.k.a “Tabour”) model just around the corner. And they are both equipped with a PPC CPU. There are just two logical conclusions you can make when faced with this: either the maker of these products is nuttier than a snicker’s bar, or there is something the general public doesn’t know.
What the general public doesn’t know has turned out to be quite a lot. While you would think PPC was dead and buried, the reality of PPC is not that simple. Turns out there is not just one PPC family (or branch) but several. The one that Apple used back in the day (and that MorphOS for some odd reason support) represents just one branch of the PPC tree if you like. I had no idea this was the case.
The first thing you are going to notice is that the CPU in the new Amiga’s doesn’t have the absurd cooling problems the old Mac’s suffered. There are no 20cm cooling ribs and you don’t need 2 fans on Ritalin to prevent a cpu meltdown; and you also don’t need a custom aluminium case to keep it cool (everyone thinks the “Mac Pro” cases were just to make them look cool. Turned out it was more literal, it was to turn the inside into a fridge).
In other words, the branch of PPC that we have known so far, the one marketed as “PowerPC” by Apple, Phase5 and everyone back in the 90’s is indeed dead and buried. But that was just one branch, one implementation of what is known as PPC.
Remember when ARM died?
When I started to dig into the whole PPC topic I could not help but think about the Arm processor. It’s almost spooky to reflect on how much we, the consumer, blindly accept as fact. Just think about it: You were told that PowerPC was the bomb, so you ended up buying that. Then you were told that PowerPC was crap and that x86 was the bomb, so you mentally buried PowerPC and bought x86 instead. The consumer market is the proverbial cheep farm where most of us just blindly accept whatever advertising tell us.
This was also the case with Arm. Remember a company called Acorn? It was a great british company that invented, among other things, the Arm core. I remember reading articles about Acorn when I was a kid. I even sold my Amiga for a while and messed around with an Acorn Archimedes. A momentary lapse of sanity, I know; I quickly got rid of it and bought back my Amiga. But I did learn a lot from messing around in RISC OS.

The Acorn Archimedes, a brilliant RISC based machine that sadly didnt make it
My point is, everyone was told that Arm was dead back in the 80’s. The Acorn computers used a pure RISC processor at the time (again, PPC is a RISC based CPU but I treat them as separate since the designs are miles apart), but it was no secret that they were hoping to equip their future Acorn machines with this new and magic Arm thing. And reading about the power and speed of Arm was very exciting indeed. Sadly such a computer never saw the light of day back in the 80’s. Acorn went bust and the market rolled over Acorn much like it would Commodore later.
The point im trying to make is that, everyone was told that Arm died with Acorn. And once that idea was planted in the general public, it became a self-fulfilling prophecy. Arm was dead. End of story. It doesn’t matter that Acorn had set up a separate company that was unaffected by the bankrupcy. Once the public deem something as dead, it just vanish from the face of the earth.
Fast forward to our time and Arm is no longer dead, quite the opposite! It’s presently eating its way into just about every piece of electronics you can think of. In many ways Arm is what made the IOT revolution possible. The whole Raspberry PI phenomenon would quite frankly never have happened without Arm. The low price coupled with the fantastic performance -not to mention that these cpu’s rarely need cooling (unless you overclock the hell out of them) has made Arm the most successful CPU ever made.
The PPC market share
With Arm’s so-called death and re-birth in mind, let’s turn our eyes to PPC and look at where it is today. PPC has suffered pretty much the same fate as Arm once did. Once a branch of the tech is defined “dead” by media and spin-doctors, regardless if the PPC is actually a cluster of designs not a single design or “chip”, the general public blindly follows – and mentally bury the whole subject.
And yes I admit it, I am guilty of this myself. In my mind there was no distinction between PPC and PowerPC. Which is a bit like not knowing the difference between Rock & Roll as a genre, and KISS the rock band. If we look at this through a parallel what we have done is basically to ban all rock bands, regardless of where they are from, because one band once gave a lousy concert.
And that is where we are at. PPC has become invisible in the consumer market, even though it’s there. Which is understandable considering the commercial mechanisms at work here, but is really PPC dead? This should be a simple question. And commercial mechanisms not withstanding the answer is a solid NO. PPC is not dead at all. We have just parked it in a mental limbo. Out of sight, out of mind and all that.

Playstation 3, Nintendo WII U and Playstation VR all use Freescale PPC
PPC today has a strong foothold in industrial computing. The oil sector is one market that use PPC SBC’s extensively (read: single board computers). You will find them in valve controllers, pump and drill systems and pretty much any systems that require a high degree of reliability.
You will also be surprised to learn that cheap PPC SBC’s enjoy the same low energy requirements people adopt Arm over (3.3 – 5.0 V). And naturally, the more powerful the chip – the more juice it needs.
The reason that PPC is popular and still being used with great success is first of all reliability. This reliability is not just physical hardware but also software. PPC gives you two RTOS’s (real-time operating system) to choose from. Each of them comes with a software development toolchain that rivals whatever Visual Studio has to offer. So you get a good-looking IDE, a modern and up to date compiler, the ability to debug “live” on the boards – and also real-time signal processing protocols. The list of software modules you can pick from is massive.
The last part of that paragraph, namely real-time signal processing, is extremely important. Can you imagine having an oil valve with 40.000 cubic tons of pressure failing, but the regulator that is supposed to compensate doesn’t get the signal because Linux or Windows was busy with something else? It get’s pretty nutty at that level.
The second market can be found with set-top boxes, game consoles and tv signal decoders. While this market is no doubt under attack from cheap Arm devices – PPC still has a solid grip here due to their reliability. PPC as an embedded platform has roughly two decades head start over Arm when it comes to software development. That is a lifetime in computing terms.
When developers look at technology for a product they are prototyping, the hardware is just one part of the equation. Being able to easily write software for the platform, perform live debugging of code on the boards, and maintain products over decades rather than consumer based 1-3 year warranties; it’s just a completely different ballgame. Technology like external satellite-dish parts runs for decades without maintenance. And there are good reasons why you dont see x86 or Arm here.

Playstattion 3 and the new PSX VR box both have a Freescale PPC cpu
As mentioned earlier, the PPC branch used today is not the same branch that people remember. I cannot stress this enough, because mixing these is like mistaking Intel for AMD. They may have many of the same features but ultimately they are completely different architectures.
The “PowerPC” label we know from back in the day was used to promote the branch that Apple used. Amiga accelerators also used that line of processors for their PowerUP boards. And anyone who ever stuffed a PowerUP board in their A1200 probably remember the cooling issues. I bought one of the more affordable PowerUP boards for my A1200, and to this day I associate the whole episode as a fiasco. It was haunted by instability, sudden crashes and IO problems – all of it connected to overheating.
But PPC today as delivered by Freescale Semiconductors (bought by NXP back in 2015) are different. They don’t suffer the heat problem of their remote and extinct cousins, have low power requirements and are incredibly reliable. Not to mention leagues more powerful than anything Apple, Phase 5 or Commodore ever got their hands on.
Is Freescale for the Amiga a total blunder?
Had you asked me a few days back chances are I would said yes. I have known for a while that Freescale was used in the oil sector, but I did not take into consideration the strength of the development tools and the important role an RTOS system holds in a critical production environment.
I must also admit that I had no idea that my Playstation and Nintendo consoles were PPC based. Playstation 4 doesn’t use PPC on its motherboard, but if you buy the fantastic and sexy VR add-on package, you get a second module that is again – a PPC based product.
It also turns out that IBM’s high-end mainframes, those Amazon and Microsoft use to build the bedrock for cloud computing are likewise PPC based. So once again we see that PPC is indeed there and it’s playing an important role in our lives – but most people don’t see it. So all of this is a matter of perspective.

The Nintendo WII U uses a Freescale PPC cpu, not exactly a below-par gaming system
But the Amiga x5000 or A1222 will not be controlling a high-pressure valve or serving half a million users (hopefully); so does this affect the consumer at all? Does any of this hold any value to you or me? What on earth would real-time feedback mean for a hobby user that just want to play some games, watch a movie or code demos?
The answer is: it could have a profound benefit, but it needs to be developed and evolved first.
Musicians could benefit greatly from the superior signal processing features, but as of writing I have yet to find any mention of this in the Amiga NG SDK. So while the potential is there I doubt we will see it before the Amiga has sold in enough volume.
Fast and reliable signal dispatching in the architecture will also have a profound effect on IPC (inter process communication), allowing separate processes to talk with each other faster and more reliably than say, windows or Linux. Programmers typically use a mutex or a critical-section to protect memory while it’s being delivered to another process (note: painting in broad strokes here), this is a very costly mechanism under Windows and Linux. For instance, the reason UAE is still single threaded is because isolating the custom chips in separate threads and having them talk – turned out to be too slow. If PPC is able to deal with that faster, it also means that processes would communicate faster and more interesting software can be made. Even practical things like a web-server would greatly benefit from real-time message dispatching.
So for us consumers, it all boils down to volume. The Freescale branch of PPC processors is not dead and will be around for years to come; they are sold by the millions every year to great variety of businesses; and while most of them operate outside the traditional consumer awareness, it does have a positive effect on pricing. The more a processor is sold the cheaper it becomes.
Most people feel that the Amiga x5000 is to expensive for a home computer and they blame that on the CPU. Forgetting that 50% of the sub total goes into making the motherboard and all the parts around the CPU. The CPU alone does not represent the price of a whole new platform. And that’s just the hardware! On top of this you have the job of re-writing a whole operating system from scratch, add features that have evolved between 1994 and 2017, and make it all sing together through custom written drivers.
So it’s not your average programming project to say the least.
But is it really too expensive? Perhaps. I bought an iMac 2 years back that was supposed to be my work machine. I work as a developer and use VMWare for almost all my coding. Turned out the i5 based beauty just didn’t have the ram. And fitting it with more ram (it came with 16 gigabytes, I need at least 32) would cost a lot more than a low-end PC. The sad part is that had I gone for a PC I could have treated myself to an i7 with 32 gigabyte ram for the same price.
I later bit the bullet and bought a 3500€ Intel i7 monster with 64 gigabytes of ram and the latest Nvidia graphics card. Let’s just say that the Amiga x5000 is reasonable in context with this. I basically have an iMac i have no use for, it just sits there collecting dust and is reduced to a music player.
Secondly we have to look at potential. The Mac and Windows machines now have their potential completely exposed. We know what these machines do and it’s not going to change any time soon.
The Amiga has a lot of hidden potential that has yet to be realized. The signal processing is just one of them. The most interesting is by far the Xena chip (XMOS) that allow developers to implement custom hardware in software. It might sound like FPGA but XMOS is a different technology. Here you write code using a custom C compiler that generates a special brand of opcodes. Your code is loaded onto a part of the chip (the chip is divided into X number of squares, each representing a piece of logic, or “custom chip” if you like) and will then act as a custom-chip.

The Amiga x5000 in all her glory, notice the moderate cooling for the CPU
The XENA technology could really do wonders for the Amiga. Instead of relying on traditional library files that are executed by the main CPU, things like video decoding, graphical effecs, auxiliary 3D functionality and even emulation (!) can now be dealt-with by XENA and executed in parallel with the main CPU.
If anything is going to make or break the Amiga, it wont be the Freescale PPC processor – it will be the XENA chip and how they use it to benefit the consumer.
Just imagine running UAE almost solely on the XENA chip, emulating 68k applications at near native speed – without using the main CPU at all? Sounds pretty good! And this is a feature you wont find on a PC motherboard. Like always they will add it should it become popular, but right now it’s not even on the radar.
So I for one do believe that the next generation Amiga machines have a shot. The A1222 is probably going to be the defining factor. It will retail at an affordable price (around 450€) and will no doubt go head-to-head with both consoles and mid-range PC’s.
So like always it’s about volume, timing and infrastructure. Everything but the actual processor to be honest.
Last words
Its been a valuable experience to look around and read up on PPC. When I started my little investigation I had a dark picture in my head where the new Amiga machines were just a waste of time. I am happy to say that this is not true and the Freescale processors are indeed alive and kicking.
It was also interesting to see how widespread PPC technology really is. It’s not just a specialist platform, although that is absolutely where it’s strength is financially; it ships in everything from your home router to your tv-signal decoder or game system. So it does have a foot in the consumer market, but like I have outlined here – most consumers have parked it in a blind-spot and we associate the word “PowerPC” with the fiasco of Apple in the past. Which is a bit sad because it’s neither true or fair.
I have no problem seeing a future where the Amiga becomes a viable commercial product again. I think there is some way to go before that happens, and the spear-head is going to be the A1222 or a similar product.
But like I have underlined again and again – it all boils down to developers. A platform is only as good as the software you can run on it, and Hyperion should really throw themselves into porting games and creativity software. They need to build up critical mass and ship the A1222 with a ton of titles.
For my personal needs I will be more than happy just owning the x5000. It doesn’t need to be a massive commercial success, because Amiga is in my blood and I will always enjoy using it. And yes it is a bit expensive and I’m not in the habit of buying machines like this left and right. But I can safely say that this is a machine that I will be enjoying for many, many years into the future – regardless of what others may feel about it.
I would suggest that Hyperion lower their prices to somewhere around 1000€ if possible. Right now they need to think volume rather than profit, and hopefully Hyperion will start making the OS compatible with Arm. Again my thoughts go to volume and that IOT and embedded systems need an alternative to Linux and Windows 10 embedded.
But right now I’m itching to start developing for it – and I’m not alone 🙂
Amiga OS 4, object pascal and everything
Those that read my blog knows that I’m a huge fan of the Commodore Amiga machines. This was a line of computers that took the world by storm around 1985 and held its ground until 1993. Sadly the company had to file for bankruptcy after a series of absurd financial escapades by its management.

The original team before it fell prey to mismanagement
The death of Commodore is one of the great tragedies in computing history. There is no doubt that Commodore represented a much-needed alternative to Microsoft and Apple – and the death of Commodore meant innovation of technology took a turn for the worse.
Large books have been written on this subject, as well as great documentaries and movies – so I’m not going to dig further into the drama here. Ars Technica has a range of articles covering the whole story, so if you want to understand how the market got the way it is today, head over and read up on the story.
On a personal level I find the classic Amiga machines a source of great inspiration even now. Despite Commodore dying in the 90’s, today 30 years after the fact I still stumble over amazing source-code on this awesome computer; There are a few things in Amiga OS that “hint” to its true age, but ultimately the system has aged with amazing elegance and grace. It just blows people away when they realize that the Amiga desktop hit the market in 1984 – and much of what we regard as a modern desktop experience is actually inherited from the Amiga.

Amiga OS is highly customizable. Here showing OS 3.9 [the last of the classic OS versions]
For instance: the realization of the new Amiga models have cost £ 1.2 million, so there are serious players involved in this.
The user-base is varied of course, it’s not all developers and engineers. You have gamers who love to kick back with some high quality retro-gaming. You have graphics designers who pixel large masterpieces (an almost lost art in this day and age). And you have musicians who write awesome tracks; then use that to spice up otherwise flat and dull PC based tracks.
What is even more awesome is the coding. Even the latest Freepascal has been ported, so if you were expecting people hand punching hex-codes you will be disappointed. While the Amiga is old in technical terms, it was so far ahead of the competition that people are surprised just how capable the classic systems are.
And yes, people code games, demos and utility programs for the classical Amiga systems even today. I just installed a Dropbox cloud driver on my system and it works brilliantly.
The brand new Amiga
Classic Amiga machines are awesome, but this post is not about the old models; it’s about the new models that are coming out now. Yes, you read right: next generation Amiga computers that have finally become a reality. Having waited for 22 years I am thrilled to say that I just ordered a brand new Amiga 5000! (and cant wait to install Freepascal and start coding).
It’s also quite affordable. The x5000 model (which is the power system) retails at around €1650, which is roughly half the price I paid for my Intel i7, Nvidia GeForce GTX 970 workstation. And the potential as a developer is enormous.
Just think about the onslaught of Delphi code I can port over, and how instrumental my software can become by getting in early. Say what you will about Freepascal but it tends to be the second compiler to hit a platform after GCC. And with Freepascal in place a Delphi developer can do some serious magic!
Right. So the first Amiga is the power model, the Amiga 5000. This can be ordered today. It cost the same as a good PC (1600€ range depending on import tax and vat). This is far less than I paid for my crap iMac (that I never use anymore).
The power model is best suited for people who do professional work on the machine. Software development doesn’t necessarily need all the firepower the x5000 brings, but more demanding tasks like 3d rendering or media composition will.
The next model is the A1222 which is due out around x-mas 2017 /slash/ first quarter

The A1222 “Tabour”
2018. You would perhaps expect a mid-range model, something retailing at around €800 or there abouts – but the A1222 is without a doubt a low-end model.
It should retail for roughly €450. I think this is a great idea because AEON (who makes hardware) have different needs from Hyperion (who makes the new Amiga OS [more about that further into the article]). AEON needs to get enough units out to secure the foundation – while Hyperion needs vertical market penetration (read: become popular and also hit other hardware platforms as well). These factors are mutually exclusive, just like they are for Windows and OS X. Which is probably why Apple refuse to sell OS X without a mac, or they could end up competing with themselves.
A brave new Amiga OS
But there is more to this “revival” than just hardware. Many would even say that hardware is the least interesting about the next generation systems, and that the true value at this point in time is the new and sexy operating system. Because what the world needs now more than hardware (in my opinion) is a lightweight alternative to Linux and Windows. A lean, powerful, easy to use, highly customizable operating system that will happily boot on a $35 Raspberry PI 3b, or a $2500 Intel i7 monster. Something that makes computing fun, affordable and most of all: portable!
And with lean I have to stress that the original Amiga operating system, the classic 3.x system that was developed all the way to the end – was initially created to thrive in as little as 512kb. At most I had 2 megabytes of ram in my Amiga 1200 and that was ample space to write and run large programs, play the latest games and enjoy the rich, colorful and user-friendly desktop environment. We have to remember that Amiga had a multi-tasking, window based OS a decade before Microsoft.
Naturally the next-generation systems is built to deal with the realities of 2017 and beyond, but incredibly enough the OS will run just fine with as little as 256 megabytes. Not even Windows embedded can boot up on that. Linux comes close with distributions like Puppy and DSL, but Amiga OS 4 gives you a lot more functionality out of the box.
What way to go?
OK so we have new hardware, but what about the software? Are the new Amiga’s supposed to run some ancient version of Amiga OS? Of-course not! The people behind the new hardware have teamed up with a second company, Hyperion, that has believe it or not, done a full re-implementation of Amiga OS! And naturally they have taken the opportunity to get rid of annoying behavior – and adding behavior people expect in 2017 (like double-clicking on a window header to maximize it, easy access to menus and much more). Visually Amiga OS 4 is absolutely gorgeous. Just stunning to look at.
Now there are many different theories and ideas about where a new Amiga should go. Sadly it’s not just as simple as “hey let’s make a new amiga“; the old system is literally boiled in patent and legislation issues. It is close to an investors worst nightmare since ownership is so fragmented. Back when Commodore died, different parts of the Amiga was sold to different companies and individuals. The main reason we havent seen a new Amiga until now – is because the owners have been fighting between themselves. The Amiga as we know it has been caught in limbo for close to two decades.
My stance on the whole subject is that Trevor Dickenson, the man behind the next generation Amiga systems, has done the only reasonable thing a sane human being can when faced with a proverbial patent kebab: the old hardware is magical for us that grew up on it – but by todays standard they are obsolete dinosaurs. The same can be said about the Amiga OS 3.9. So Trevor has gone for a full re-implementation and hardware.
The other predominant idea is more GNU/Linux in spirit, where people want Amiga OS to be platform independent (or at least written in a way that makes the code run on different hardware as long as some fundamental infrastructure exists). This actually resulted in a whole new OS being written, namely Aros, which is a community made Amiga OS clone. A project that has been perpetually maintained for 20 years now.
While I think the guys behind Aros should be applauded, I do feel that AEON and Hyperion have produced something better. There are still kinks to work out on both systems – and don’t get me wrong: I am thrilled that Aros is available, I just enjoy OS 4 more than I do Aros. Which is my subjective opinion of course.
New markets
Right. With all this in mind, let us completely disregard the old Amiga, the commodore drama and instead focus on the new operatingsystem as a product. It doesn’t take long before a few thrilling opportunities present themselves.
The first that comes to my mind is how well suited OS 4 would be as an embedded platform. The problem with Linux is ultimately the same that haunts OS X and Windows, namely that size and complexity grows proportionally over time. I have seen Linux systems as small as 20 megabytes, but for running X based full screen applications, taking advantage of hardware accelerated graphics – you really need a bigger infrastructure. And the moment you start adding those packages – Linux puts on weight and dependencies fast!

The embedded market is one place where Amiga OS would do wonders
With embedded systems im not just talking about head-less servers or single application devices. Take something simple like a ticket booth, an information kiosk or POS terminal. Most of these run either Windows embedded or some variation of Linux. Since both of these systems require a fair bit of infrastructure to function properly, the price of the hardware typically start at around 300€. Delphi and C++ based solutions, at least those that I have seen, end up using boards in the 300€ to $400€ range.
This price-tag is high considering the tasks you need to do in a POS terminal or ticket system. You usually have a touch enabled screen, a network connection, a local database that will cache information should the network be down – the rest is visual code for dealing with menus, options, identification and fault tolerance. If a visa terminal is included then a USB driver must also be factored in.
These tasks are not heavy in themselves. So in theory a smaller system if properly adapted for it could do the same if not better job – at a much better price.
More for less, the Amiga legacy
Amiga OS would be able to deliver the exact same experience as Windows and Linux – but running on more cost-effective hardware. Where modern Windows and Linux typically need at least 2 gigabyte of ram for a heavy-duty visual application, full network stack and database services – Amiga OS is happy to run in as little as 512 megabytes. Everything is relative of course, but running a heavy visual application with less than a gigabyte memory in 2017 is rare to say the least.
Already we have cut cost. Power ARM boards ships with 4 gigabytes of ram, powered by a snappy ARM v9 cpu – and medium boards ship with 1 or 2 gigabytes of ram and a less powerful cpu. The price difference is already a good 75€ on ram alone. And if the CPU is a step down, from ARM v9 to ARM v8, we can push it down by a good 120€. At least if you are ordering in bulk (say 100 units).
The exciting part is ultimately how well Amiga OS 4 scales. I have yet to try this since I don’t have access to the machine I have ordered yet – and sadly Amiga OS 4.1 is compiled purely for PPC. This might sound odd since everyone is moving to ARM, but there is still plenty of embedded systems based on PPC. But yes, I would urge our good friend Trevor Dickenson to establish a migration plan to ARM because it would kill two birds with one stone: upgrading the faithful Amiga community while entering into the embedded market at the same time. Since the same hardware is involved these two factors would stimulate the growth and adoption of the OS.

The PPC platform gives you a lot of bang-for-the-buck in the A1222 model
But for sake of argument let’s say that Amiga OS 4 scales exceptionally well, meaning that it will happily run on ARM v8 with 1 gigabyte of ram. This would mean that it would run on systems like the Asus Tinkerboard that retails at 60€ inc. vat. This would naturally not be a high performance system like the A5000, but embedded is not about that – it’s about finding something that can run your application safely, efficiently and without problems.
So if the OS scales gracefully for ARM, we have brought the cost down from 300€ to 60€ for the hardware (I would round that up to 100€, something always comes up). If the customers software was Windows-based, a further 50€ can be subtracted from the software budget for bulk licensing. Again buying in bulk is the key.
Think different means different
Already I can hear my friends that are into Linux yell that this is rubbish and that Linux can be scaled down from 8 gigabytes to 20 megabytes if so needed. And yes that is true. But what my learned friends forget is that Linux is a PITA to work with if you havent spent a considerable amount of time learning it. It’s not a system you can just jump into and expect to have results the next day. Amiga OS has a much more friendly architecture and things that are often hard to do on Windows and Linux, is usually very simple to achieve on the Amiga.
Another fact my friends tend to forget is that the great majority of commercial embedded projects – are done using commercial software. Microsoft actually presented a paper on this when they released their IOT support package for the Raspberry PI. And based on personal experience I have to agree with this. In the past 20 years I have only seen 2 companies that use Linux as their primary OS both in products and in their offices. Everyone else uses Windows embedded for their products and day-to-day management.
So what you get are developers using traditional Windows development tools like Visual Studio or Delphi (although that is changing rapidly with node.js). And they might be outstanding programmers but Linux is still reserved for server administrators and the odd few that use it on hobby basis. We simply don’t have time to dig into esoteric “man pages” or explore the intricate secrets of the kernel.
The end result is that companies go with what they know. They get Windows embedded and use an expensive x86 board. So where they could have paid 100€ for a smaller SBC and used Amiga OS to deliver the exact same product — they are stuck with a 350€ baseline.
Be the change
The point of this little post has been to demonstrate that yes, the embedded market is more than open for alternatives. Linux is excellent for those that have the time to learn its many odd peculiarities, but over the past 20 years it has grown into a resource hungry beast. Which is ironic because it used to be Windows that was the bloated scapegoat. And to be honest Windows embedded is a joy to work with and much easier to shape to your exact needs – but the prices are ridicules and it wont perform well unless you throw at least 2 gigabyte on it (relative to the task of course, but in broad strokes that’s the ticket).
But wouldn’t it be nice with a clean, resource friendly and extremely fast alternative? One where auto-starting applications in exclusive mode was a “one liner” in the startup-sequence file? A file which is actually called “startup-sequence” rather than some esoteric “init.d” alias that is neither a folder or an archive but something reminiscent of the Windows registry? A system where libraries and the whole folder structure that makes up drivers, shell, desktop and service is intuitively named for what they are?

Amiga OS could piggyback on the wave of low-cost ARM SBC’s that are flooding the market
You could learn how to use Amiga OS in 2 days tops; but it holds great depth so that you can grow with the system as your needs become more complex. But the general “how to” can be picked up in a couple of days. The architecture is so well-organized that even if you know nothing about settings, a folder named “prefs” doesn’t leave much room for misinterpretation.
But the best thing about AmigaOS is by far how elegant it has been architected. You know, when software is planned right it tends to refactor out things that would otherwise be an obstacle. It’s like a well oiled machinery where each part makes perfect sense and you don’t need a huge book to understand it.
From where I am standing, Amiga OS is ultimately the biggest asset the Hyperion and AEON have to offer. I love the new hardware that is coming out – but there is no doubt in my mind, and I know I am right about this, that the market these companies should focus on now is not PPC – but rather ARM and embedded systems.
It would take an effort to port over the code from a PPC architecture to ARM, but having said that – PPC and ARM have much more in common than say, PPC and x86.
I also think the time is ripe for a solid power ARM board for desktop computers. While smaller boards gets most of the attention, like the Raspberry PI, the ODroid XU4 and the (S)Tinkerboard – once you move the baseline beyond 300€ you see some serious muscle. Boards like iMX6 OpenRex SBC Ultra packs a serious punch, and like expected it ships with 4 gigabyte of ram out of the box.
While it’s impossible to do a raw comparison between the A1222 and the iMX6 OpenRex, I would be surprised if the iMX6 delivered terrible performance compared to the A1222 chipset. I am also sure that if we beefed up the price to 700€, aimed at home computing rather than embedded – the ARM power boards involved would wipe the floor with PPC. There are a ton of factors at play here – a fast CPU doesn’t necessarily mean better graphics. A good GPU should make up at least 1/5 of the price.
Another cool factor regarding ARM is that the bios gives you a great deal of features you can incorporate into your product. All the ARM board I have gives you FAT32 support out of the box for instance, this is supported by the SoC itself and you don’t need to write filesystem drivers for it. Most boards also support Ext2 and Ext3 filesystems. This is recognized automatically on boot. The rich bios/mini kernel is what makes ARM so attractive to code for, because it takes away a lot of the boring, low-level tasks that took months to get right in the past.
Final words
This has been a long article, from the early years of Commodore – all the way up to the present day and beyond. I hope some of my ideas make sense – and I also hope that those who are involved in the making of the new Amiga perhaps pick up an idea or two from this material.
Either way I will support the Amiga with everything I got – but we need a couple of smart ideas and concrete plans on behalf of management. And in my view, Trevor is doing exactly what is needed.
While we can debate the choice of PPC, it’s ultimately a story with a long, long background to it. But thankfully nothing is carved in stone and the future of the Amiga 5000 and 1222 looks bright! I am literally counting the days until I get one!
Amibian.js on bitbucket
The Smart Pascal driven desktop known as Amibian.js is available on bitbucket. It was hosted in a normal github repository earlier – so make sure you clone out from this one.
About Amibian.js
Amibian is a desktop environment written in Smart Pascal. It compiles to JavaScript and can be used through any modern HTML5 compliant browser. The project consists of both a client and server, both written in smart pascal. The server is executed by node.js (note: please install PM2 to have better control over scaling and task management: http://pm2.keymetrics.io/).
Amibian.js is best suited for embedded projects, such as kiosk systems. It has been used in tutoring software for schools, custom routers and a wide range of different targets. It can easily be molded into a rich environment for SAD (single application devices) based software – but also made to act more as a real operating system:
- Class driven filesystem, easy to target external services
- Ram device-type
- Browser cache device-type
- ZIPfile device-type
- Node.js device-type
- Cross domain application hosting
- Traditional IPC protocol between hosted application and desktop
- Shared resources
- css styling
- glyphs and images
- Event driven visual controls
- Windowing manager makes it easy to implement custom applications
- Support for fullscreen API
Amibian ships with UAE.js (based on the SAE.js codebase) making it possible to run Amiga software directly on the desktop surface.
The bitbucket repository is located here: https://bitbucket.org/hexmonks/client
Smart Pascal: Amibian vs. FriendOS
This is not a new question, and despite my earlier post I still get hammered with these on a weekly basis – so lets dig into this subject and clean it up.
I fully understand that for non-developers suddenly having two Amiga like web desktops can be a bit confusing; especially since they superficially at least do many of the same things. But there is actually a lot of co-incidence surrounding all this, as well as evolution of the general topic. People who work with a topic will naturally come up with the same ideas from time to time.
But ok, lets dig into this and clear away any confusion
You know about FriendOS right? It looks a lot like Amibian
“A lot” is probably stretching it. But ok: FriendOS is a custom server system with a sexy desktop front-end written in HTML5. So you have a server that is custom written to interact with the browser in a special way. This might sound like a revolution to non-developers but it’s actually an established technology; its been a part of Delphi and C++ builder for at least 12 years now (Intraweb being the best example, Raudus another). So if you are wondering why im not dazzled, it’s because this has been there for a while.
The whole point of Amibian.js is to demonstrate a different path; to get away from the native back-end and to make the whole system portable and platform independent. So in that regard the systems are diametrically different.

Custom web servers that talk to your web-app is old news. Delphi developers have done this for a decade at least and it’s not really interesting at this point. Node.js holds much greater promise.
What FriendOS has done that is unique, and that I think is super cool – is to couple their server with RDP (remote desktop protocol) and some nice video streaming for smooth video chat. Again these are off the shelves parts that anyone can add once you have a native back-end, it’s not really hard to code but time-consuming; especially when you are potentially dealing with large number of users spawning threads all over the place. I think Friend-Labs have done an exceptional good job here.
When you combine these features it creates the impression of an operating system like environment. And this is perfectly fine for ordinary users. It all depends on your needs and what exactly you use the computer for.
And just to set the war-mongers straight: FriendOS is not going up against Amibian. it’s going up against ChromeOS, Nayu and and a ton of similar systems; all of them with deep pockets and an established software portfolio. We focus on software development. Not even in the same ballpark.
To be perfectly frank: I see no real purpose for a web desktop except when connected to a context. There has to be an advantage beyond isolating web functions in one place. You need something special that your system does better than others, or different than others. Amibian has been about UAE.js and to run retro games in a familiar environment. And thus create a base that Amiga lovers can build on and play with. Again based on our prefab for customers that make embedded systems and use our compiler and RTL for that.
If you have a hardware product like a NAS, a ticket system or a retro-game machine and want to have a nice web front-end for it: then it makes sense. But there is absolutely nothing in both our systems that you can’t whip-up using Intraweb or Raudus in a few weeks. If you have the luxury of a native back-end, then adding Active Directory support is a matter of dropping a component. You can even share printers and USB devices over the wire if you like, this has been available to Delphi and c++ developers for ages. The “new” factor here, which FriendOS does very well i might add, is connectivity.
This might sound like criticism but it’s really not. It’s honesty and facts. They are going to need some serious cash to take on Google, Samsung, LG and various other players that have been doing similar things for a long time (or about to jump on the same concepts) — Amibian.js is for Amiga fans and people who use Smart Pascal to write embedded applications. We don’t see anything to compete with because Amibian is a prefab connected to a programming language. FriendOS is a unification system.
A programming language doesnt have the aspirations of a communication company. So the whole “oh who is best” or “are you the same” is just wrong.
Ok you say it’s not competing, but why not?
To understand Amibian.js you first need to understand Smart Pascal (see Wikipedia article on Smart Pascal). Smart Pascal (smartmobilestudio.com) is a software development studio for writing software using web technology rather than native machine-code. It allows you to create whatever you like, from games to servers, or kiosk software to the next Facebook clone.
Our focus is on enabling our customers to quickly program robust mobile applications, servers, kiosk software, games or large JavaScript projects; products that would otherwise be hard to manage if all you have is vanilla JavaScript. I mean why spend 2 years coding something when you can do it in 2 months using Smart? So a web desktop is just ridicules when you understand how large our codebase is and the scope of the product.
Under Smart Pascal what people know as Amibian.js is just a project type. There is no competition between FriendOS and Amibian because a web desktop represents a ridicules small piece of our examples; it’s literally mistaking the car for the factory. Amibian is not our product, it is a small demo and prefab (pre fabricated system that others can download and build on) project that people use to save time. So under Smart, creating your own web desktop is a piece of cake, it’s a click, and then you can brand it, expand it and do whatever you like with it. Just like you would any project you create in Visual Studio, Delphi or C++ builder.
So we are not in competition with FriendOS because we create and deliver development tools. Our customers use Smart Pascal to create web environments both large and small, and naturally we deliver what they need. You could easily create a FriendOS clone in Smart if you got the skill, but again – that is but a tiny particle in our codebase.
Really? Amibian.js is just a project under Smart Pascal?
Indeed. Our product delivers a full object-oriented pascal compiler, debugger and IDE. So you can write classes, use inheritance and enjoy all the perks of a high-level language — and then compile this to JavaScript.
You can target node.js, the browser and about 90+ embedded devices out of the box. The whole point of Smart Pascal is to avoid the PITA that is writing large applications in JavaScript. And we do this by giving you a classical programming language that was made especially for application authoring, and then compile that to JavaScript instead.

Amibian.js is just a tiny, tiny part of what Smart Pascal is all about
This is a massive undertaking that started back in 2009/2010 and involves a high-quality compiler, linker, debugger and code generator; a full IDE with a ton of capabilities and last but not least: a huge run-time library that allows you to work with the DOM (document object model, or HTML) and node.js from the vantage point of a programmer.
Most people approach web development as a designer. They write html and then style them using a stylesheet. They work with colors, aspects and pages. Which means people who traditionally write programs falls between two chairs: first they must learn about html and css, and secondly a language which is ill equipped for large scale applications (imagine writing adobe photoshop in nothing but JS. Sure it’s possible, but wouldnt you rather spend a month coding that than a year? In a language that actually makes sense?).
With Smart you approach web development like you do writing programs. You work with visual controls, change properties, write code in response to events. Even writing your own visual controls that you can re-use and inherit from later is both fun and easy. So rather than ending up with a huge was of spaghetti code, which sadly is the fate of most large-scale JavaScript projects — Smart lets you work like you are used to. In a language better suited for the task.
And yes, I was not kidding when I said this was a huge undertaking. The source code in our codebase is close to 2.5 gigabytes. And keep in mind that this is source-code and libraries. So it’s not something you slap together over the weekend.

The Smart source-code is close to 2.5 gigabytes. It has taken years to complete
But why do Amibian and FriendOS both focus on the Amiga?
That is pure co-incidence. The guys over at Friend Labs started out on the Amiga just like we did. So when I updated our desktop project (previously called Quartex Media Desktop) the Amiga look and feel came natural to me.
I’m a huge retro-computing fan that loves the Amiga. When I sat down to rewrite our window manager I loved the way Amiga OS 4.x looked, so I decided to implement an UI inspired by that.
People have to remember that the Amiga was a huge success in Scandinavia, so finding developers that are in their late 30s or early 40s that didn’t own an Amiga is harder than you think.
So the fact that we all root our ideas back to the Amiga is both co-incidence and a mutual passion for a great platform. One that really should have survived the financial onslaught of fat CEO’s and thir minions in the board.
But Amibian does a lot of what FriendOS does?
Probably. JavaScript is multi-tasking by default so if loading external URL’s into window containers, doing live resize and other things is what you refer to then yes. But that is the nature of web programming. Its like creating a bucket if you want to carry water; it is a natural first step of an evolutionary pattern. It’s not like FriendOS is copying us I would imagine.
For the record Smart started back in 2010 and the media desktop came in with the first hotfix, so its been available years before Friend-Labs even existed. Creating a desktop has not been a huge part of what we do because mobile applications, building a rich and solid run-time-library with hundreds of classes for our customers – and making an IDE that is great to use, that is our primary job.
We didn’t even know FriendOS existed. Let alone that it was a Norwegian product.
But you posted that you worked for FriendOS earlier?
Yes I did, very briefly. I was offered a position and I worked there for a month. It was a chance to work side by side with legends like David John Pleasance, ex head of Commodore for europe; and also my childhood hero Francois Lionet, author of Amos Basic for the Amiga way back in the 80’s and 90s.

We never forget our childhood heroes
Sadly we had our wires crossed. I am an awesome object pascal developer, while the guys at Friend-Labs are awesome C developers. I work primarily on Windows while they work mostly on Linux. So in essence they hired a Delphi developer to work in a language he doesn’t know on a platform he havent used.
They simply took for granted that I worked in C/C++, while I took for granted that they used object pascal. Its an easy mistake to make and its not the first time; and probably not the last.
Needless to say the learning curve would be extremely high for any developer (learning a new operating-system and programming language at the same time as you are supposed to be productive).
When my girlfriend suddenly faced a life threatening illness the situation became worse. It was impossible for me to commute or leave her side for the unforeseeable future; so when you add the six months learning curve to this situation; six months of not being able to contribute on the level I am used to; well I am old enough to know how that ends. So I did what was best for everyone and resigned.
Besides, I am a damn good Delphi developer with standing invitation to many companies; so it made more sense to just take a step backwards. Which was not fun because I really enjoyed the short time I was there. But, it was not meant to be.
And that is basically all there is to it.
Ok. But if Smart is a development tool, will it support Friend-OS ?
This is something that I really want to do. But since The Smart Company is a proper company with stocks, shareholders and investors – it’s not a decision I can take on my own. It is something that must be debated by the board. But personally yeah, I would love that.

As they grow, so does the need for proper development tools
One of the reasons I hope FriendOS succeeds is because it’s a win-win situation. The more they expand the more relevant Smart becomes. Say what you will about JavaScript but writing large and complex applications is not easy by any measure.
So the moment we introduce Smart Pascal for Friend, their users will be able to write large applications rapidly, with better time-to-market and consequent ROI. So it’s a win-win. If they succeed then we get a bigger market; If they don’t we havent lost anything.
This may sound extremely self-serving, but Friend-Labs have had the same chance as everyone else to invest in Smart; our investor plans have been available for quite some time, and we have to do what is best for our company.
But what about Amibian, was it just a short thing?
Not at all. It is put on hold for a few months while we release the next generation RTL. Which is probably the biggest update in the history of Smart Pascal. We have a very clear agenda ahead of us and Amibian.js is (as underlined) a very small part of what we do.
But Amibian is written using our next generation RTL, and without that our customers cant really do much with it. So it’s important to get the RTL out first and then work on the IDE to reflect its many new features. After that – Amibian.js development will continue.
The primary target for Amibian.js is embedded devices and kiosk systems, coupled with full-screen web applications and hardware front-ends (NAS and backup devices being great examples). So the desktop will run on affordable, off the shelves hardware starting at $40 and all the way up to the most powerful and expensive x86 boards on the market. Cheap solutions like Raspberry PI, ODroid XU4 and Tinkerboard will deliver what you today need a dedicated $120 x86 board to achieve.

Our desktop will run on many targets and is platform independent by design
This means that our deskop has a wildly different modus operandi. We will not require a constant connection to a remote server. Amibian will happily boot up on a single device, regardless of processor type.
Had we coded our backend using Delphi or C++ builder (native like FriendOS have done) we would have been finished months ago. And I could have caught up with FriendOS in a couple of months if I wanted to. But that is not in our agenda. We have written our server framework for node.js as we coded the desktop – which means it’s platform and OS agnostic by design. If node.js runs, Amibian will run. It wont care if you are running on a $40 embedded board or the latest Intel i9 cpu.
Last words
I really hope this has helped and that the confusion between Amibian.js and our agenda, versus what Friend-Labs is doing, is now clearer.

From Norway with love
I wish Friend-Labs the very best and hope they are successful in their endeavour. They have worked very hard on the product and deserve that. And while I might come over as arrogant at times, im really not.
Web desktops have been around for a long time now (Asustor is my favorite) through Delphi and C++ builder and that is just facts. But that doesn’t mean you can’t put things together in new and interesting ways! Smart itself was first put together by existing technology. It was said to be impossible by many because JavaScript and object pascal are unthinkable companions. But it turned out to be a perfect match.
As for the future – personally I don’t believe in the web-desktop outside a specific context, something to give it purpose if you like. I believe for instance that Amibian.js will be awesome for Amiga users when its running on a $99 ARM laptop. Where the system boots straight into a full-screen desktop and where UAE.js is fully integrated into the core, making retro-gaming and running old programs close to seamless. That I can believe in.
But it would make no sense running Amibian or FriendOS in a browser on top of a Windows desktop or a full Ubuntu X session. Unless the virtual desktop functions as your corporate window with access to company mail, documents and essentially what every web-based intranet already does. So once again we end up with the fact that this has already been done. And unless you create a unique context for it, it just wont have any appeal. This is also why I havent pursued the same tech Friend-Labs have, because that’s not where the exciting stuff is happening.
But I will happily be proven wrong, because that means an even bigger market for us should we decide to support the platform.
Smart Pascal: Busting browser storage limits
Sessionstorage is the name for a browser’s in-memory only storage. Meaning that it’s essentially a ram-disk that is just deleted when you navigate away from the website or close the browser.
Sessionstorage has also been deprecated, so you should avoid using it and go for Localstorage, or just use a raw, untyped uint8 array instead.
Or should you?
Ensuring 64 megabytes minimum
Browsers do not behave identically across devices. Try to get a concurrent reading of something as simple as drawing sprites, and you will quickly notice that even the same device families (Android, iOS and Microsoft) can behave differently between versions – and even builds (revisions).
On embedded systems or thin clients with very little memory, allocating large chunks ot uint8 arrays is not going to work. One of my test thin-client machines has only 512 megabyte ram – and it would throw an exception if I tried to allocate more than 20 megabyte of continuous memory (again, as an array of uint8 bytes).
Using the dark side of the force

Offline means the system boots from a local cache disk
While testing Smart code on this little device, I noticed that quite large images loaded just fine. So where I was not allowed to allocate more than 20 megabytes, the browser would happily load in pictures taking up over 50 megabyte of pixel data?
It then struck me that the maximum limit of a picture, which is enforced by the DIB Api (at least on Windows desktop and embedded), is 4000 x 4000 pixels. Since each pixel is 32 bits (4 bytes, RGBA) that my friend is 64 megabytes right there!
I created a new class that inherits from the virtual-filesystem that Smart Pascal uses, created an off-screen image object in the constructor – and then made a simple but effective “bytes to scan line” calculation routine. So whenever the need for more data grew, it would first grow the picture so it could hold the data (and shrink it again) on demand.
Humble but meaningful
Now 64 megabytes might not seem like much in our day and age, but if you are on holiday and want to connect to your home NAS – 64 megabytes of available ram makes a huge difference. Remember that localstorage only allows between 5 and 10 megabytes.
I should mention that using an image as a buffer makes little sense on a full Windows PC, a Mac or a Linux box. These system will page memory to disk and you will most likely never encounter the 20 megabyte barrier I experienced on this low-end Dell thin client device. But considering that hotels, motels and b&b often have thin clients setup for their customers (read: you) – The Smart desktop has to take height for it.
Smart desktop: Amibian.js past, future and present
Had someone told me 20 years ago that I would enter my 40’s enjoying JavaScript, my younger self would probably have beaten that someone over the head with a book on hardcore demo coding or something. So yeah, things have changed so much and we are right now in the middle of a paradigm shift that is taking us all to the next level – regardless if we agree or not.
Ask a person what he thinks about “cloud” and you rarely get an answer that resembles what cloud really is. Most will say “its a fancy way of dealing with storage”. Others will say its all about web-services – and others might say it’s about JavaScript.

Old coders never die, we just get better
They are all right and wrong at the same time. Cloud is first of all the total abstraction of all parts that makes up a networked computer system. Storage, processing capacity, memory, operating system, services, programming language and even instruction set.
Where a programmer today works with libraries and classes to create programs that run on a desktop — dragging visual controls like edit-boxes and buttons into place using a form or window designer; a cloud developer builds whole infrastructures. He drags and drops whole servers into place, connects external and internal services.
Storage? Ok I need Dropbox, amazon, Google drive, Microsoft one disk, local disk – and he just drags that onto a module. Done. All of these services now have a common API that allows them to talk with each other. They become like dll files or classes, all built using the same mold – but with wildly different internals. It doesn’t matter as long as they deliver the functionality according to standard.
Processing power? Setup an Azure or Amazon account and if you got the cash, you can compute enough to pre-cacalculate the human brain if you like. It has all been turned into services — that you can link together like lego pieces.
Forget everything you think you know about web; that is but the visual rendering engine over the proverbial death-star of technology hidden beneath. People have only seen the tip of the ice berg.
Operating systems have been reduced to a preference. There is no longer any reason to pick Windows over Linux on the server. Microsoft knew years ago that this day would come. Back in the late 90s I remember reading an interview with Steve Balmer doing one of his black-ops meetings with Norwegian tech holders in Oslo; and he outlined software as a service when people were on 14.4 modems. He also mentioned that “we need a language that is universal” to make this a reality. You can guess why .net was stolen from Borland, not to mention their failed hostile takover of Java (or J#) which Anders Hejlsberg was hired to spear-head.
Amibian.js
Amibian.js is my, Gunnar and Thomas‘s effort to ensure that the Amiga is made portable and can be enjoyed in this new paradigm. It is not made to compete with anyone (as was suggested earlier), but rather to make sure Amiga gets some life into her again – and that people of this generation and the kids growing up now can get to enjoy the same exciting environment that we had.

From Scandinavia with love
The world is going JavaScript. Hardware now speaks JavaScript (!), your TV now speaks JavaScript – heck your digital watch probably runs JavaScript. And just to add insult to injury – asm.js now compiles JS code side-by-side with C/C++ in terms of speed. I think the browser has seen more man years of development time than any other piece of software out there – with the exception of GCC / Gnu Linux perhaps.
Amibian is also an example of a what you can do with Smart Pascal, which is a programming environment that compiles object pascal to JavaScript. One we (The Smart Company AS) made especially for this new paradigm. I knew this was coming years ago – and have been waiting for it. But that’s another story all together.
Future
Well, naturally the desktop system is written from scratch so it needs to be completed. We are at roughly 40% right now. But there is also work to be done on UAE.js (a mild fork of sae, scriptable Amiga emulator) in terms of speed and IO. We want the emulated Amiga side to interact with the modern web desktop – to be able to load and save files to whatever backend you are using.

For those about to rock; We salute you!
Well, it’s not that easy. UAE is like an organism, and introducing new organs into an existing creature is not easily done. UAE.js (or SAE) has omitted a huge chunk of the original code – which also includes the modified boot-code that adds support for external or “virtual” UAE drives (thanks to Frode Solheim of Fs-UAE for explaining the details of the parts here).
But, there are hacker ways. The dark side is a pathway to many abilities, some deemed unnatural. So if all else fails, i will kidnap the hardfile API and delegate the IO signals to the virtual filesystem on the server — in short, UAE.JS will think it’s booting from a hardfile in memory – when in reality it will get its data from node.js.
There are some challenges here. UAE (the original) is not async but ordinary, linear C code. JavaScript is async and may not return the data on exit of the method. So i suspect I will have to cache quite a lot. Perhaps as much as 1 megabyte backwards and forwards from the file-position. But getting data in there we will (and out), come hell or high water.
We can also drop a lot of sub code, like parts of the gayle interface. I found out this is the chip that deals with the IDE interface — so it has to be there, but it can also host memory expansions – but who the hell cares in 2017 in JavaScript about that. More than enough fun via standard chip/fast/rtg memory – so the odd bits can be removed.
So we got our work cut out for us. But hey.. there can only be one .. QUARTEX! And we bring you fire.
Ok. Lets do this!
Amiga revival, Smart Pascal and growing up
Maybe its just me but the Amiga is kinda having a revival these days? Seems to me like the number of people going back to the Amiga has just exploded the past couple of years. Much of that is no doubt thanks to my buddy Gunnar Kristjannsen’s excellent work on the Amibian distro for Raspberry PI. Making a high-end Amiga experience that would have cost you thousands of dollars available at around $35.

Looking forward to some cosy reading
While Gunnar’s great distro is no doubt a huge factor in this, I believe its more than just easy access. I think a lot of us that grew up with the system, who lived the Amiga daily from elementary school all the way to college – have come full circle. We spend our days coding on PC’s, Mac’s or making mobile software – but deep down inside, I think all of us are still in love with that magical machine; The Commodore Amiga.
I am honestly at a loss for words on this (and that’s a first, most days you can’t get me to shut the hell up). Why should a 30-year-old system attract me more, and still cause so much joy in my life – compared to the latest stuff? I mean, I got a fat ass I7 that growls when you start it with 64 gigabyte ram, SSD and all the extras; I got macs all over the house, the latest consoles – and enough embedded boards to start my own arcade if I so desired.
Yet at the end of the day, when the kids are in bed and GF firmly planted in front of her favorite tv show, fathers are down in basements all around europe. Not watching porn, not practising black magic or trying to transform led into gold, nope: coding in assembler on a mc68k processor running at a whopping 7Mhz and loving every minute of it!
Today the madness held no bounds and forced me, out of sheer perverted joy, to order 4 copies of Amiga Future magazine (yes there are still magazines for the Amiga, believe it or not), a few posters, a mousemat and (drumroll) the ever sexy A1222. Actually that was a lie, I ordered that weeks ago, Trevor Dickenson over at A-EON hooked me up so im getting it as soon as it comes off the assembly line. And for those that don’t know, the A1222 is the new affordable Amiga that is released today. It’s not a remake of the older models, but a brand new thing. I havent been this giddy about a piece of silicon since I fell into a double-d cup at a beach in Spain last year.
Smart Pascal
It made sense to unite my two great computing passions, namely the object pascal language and Amiga into one package. So whenever I have some spare time I work my ass off on the update for Smart Mobile Studio. And it’s getting probably the biggest “demo” ever shipped with a programming language.
What? Well, a remake of the Amiga operating system. But not just a simple css-styled shallow lookalike. You know me, I just had to go all the way. So I married the system with something called uae.js. Which is essentially the JavaScript version of the Amiga emulator. Its compiled with EmScripten – a post processor that takes LLVM compiled bitcode compiled with C/C++ and spits out Asm.js optimized code.

You just cant kill it, Amiga is 4ever
So, Smart Pascal in one hand – C/C++ in the right hand. Its like being back in college all over again. Only thing missing now is that Wacom suddenly returns and Borland rise from the grave with another Turbo product. But yes, JavaScript is something I really enjoy. And being able to compile object pascal to JavaScript is even better.
The end result? Well since I don’t have too much time on my hands it’s roughly 31-32% done, and when we hit 50% is when UAE.js will be activated. So right now its a sexy cloud front end. It has a virtual filesystem that runs fine over localstorage, but it can also talk to node.js and access the real filesystem on your server.
But when UAE.js kicks in you will be able to run your favorite Amiga demos, applications and games in your browser. I am actually very excited about seeing the performance. It runs most demos OK (using the Aros rom-files). I imagine running things like blitzbasic, Amos basic and SAS-C/C++ should work fine. Or at least be within the “usable” range if you got a powerful PC to play with.
The V8 JavaScript engine in webkit is due for an overhaul next year – and while I can only speculate I’m guessing real-life compilation will be the addition. They already do some heavy JIT’ing but once you throw LLVM based actual compilation into the picture – large JS applications is going to fly side by side with native stuff. And that’s when cloud front-ends like ChromeOS and other FriendOS is going to take off.
My little remake is not that ambitious, but I do intend to make this an absolute kick-ass system as far as Amiga is concerned. And for Smart Pascal developers? Well, lets just say that this demo project has pushed the RTL for all it’s worth and helped fix bugs and expand the RTL in a way that makes it a real power-house!
Growing up
Do we ever really grow up? I’m not sure any more. I look at others and see some that have adopted this role, this image of how an adult should be like — but its more often than not tied into the whole A4 family thing or some superficial work profile. And since most Amiga fanatics are in their 40’s and 50’s (same age as Delphi hooligans, Turbo was released in 1983 same year as the Amiga came out), I guess this is when kids have grown up enough for people to go “wait a minute, what .. where is my Amiga!“.
But good things come to those who wait. If someone told me that I would one day work side by side with giants like David John Pleasance, Francois Lionet and the crew at FriendUp systems – I would never have believed them. A member of quartex in meetings with the head of Commodore? My teenage self would never have believed it. Both of these men, including all the tech guys at Commodore, Mark Sibly the guy behind BlitzBasic — these were my teenage heroes. And now I get to work with two of them. That is priceless.
As for growing up – if that means losing that spark, that trigger that when lost would render us incapable of enjoying things like the Amiga, reduced to a suit in a grey world of PCs – you know, then I’m happy to be exactly where I am. If you can go to work wearing an Amiga T-Shirt, tracker music on your iPod, a family you love at home, cool people to work with – I would call that a wrap.
And looking at the hundreds and thousands of people returning to the Amiga after 30 years in the desert – something tells me I wont be alone .. 😉
You must be logged in to post a comment.