Archive for July 18, 2018

Nano PI Fire 3, part two

July 18, 2018 Leave a comment

If you missed the first installment of this test, please click here to catch up. In this installment we are just going to dive straight into general use and get a feel for what can and cannot be done.

Solving the power problem

pi-powerLike mentioned in the previous article, a normal mobile charger (5 volt, 2 amps) is not enough to support the nano-pi. Since I have misplaced my original PI power-supply with 5 volt / 3 amps I decided to cheat. So I plugged the power USB into my PC which will deliver as much juice as the device needs. I don’t have time to wait for a new PSU to arrive so this will have to do.

But for the record (and underlined) a proper PSU with at least 2.5 amps is essential to using this board. I suggest you order the official Raspberry PI 3b power-supply. But if you should find one with 3 amps that would be even better.

Web performance

The question on everyone’s mind (or at least mine) is: how does the Nano-PI fire 3 perform when rendering cutting edge, hardcore HTML5? Is this little device a potential candidate for running “The Smart Desktop” (a.k.a Amibian.js for those of you coming from the retro-computing scene)?

Like I suspected earlier, X (the Linux windowing framework) doesn’t have drivers that deliver hardware acceleration at all.


Lubuntu is a sexy desktop no doubt there, but it’s overkill for this device

This is quite easy to test: when selecting a rectangle on the Lubuntu desktop and moving the mouse-cursor around (holding down the left mouse button at the same time) if it lags terribly, that is a clear indicator that no acceleration exists.

And I was right on the money because there is no acceleration what so ever for the Linux distribution. It struggles hopelessly to keep up with the mouse-pointer as you move it around with an active selection; something that would be silky smooth had the GPU been tasked with the job.

But, hardware acceleration is not just about the desktop. It’s not some flag you enable and it magically effect everything, but rather several API’s at either the kernel-level or immediate driver level (modules the kernel loads), each affecting different aspects of a system.

So while the desktop “2d blitting” is clearly cpu driven, other aspects of the system can still be accelerated (although that would be weird and rare. But considering how Asus messed up the Tinkerboard I guess anything goes these days).

Asking Chrome for the hard facts

I fired up Google Chrome (which is the default browser thank god) and entered the magic url:


This is a built-in page that avails a detailed report of what Chrome learns about the current system, right down to specific GPU features used by OpenGL.

As expected, there was NO acceleration what so ever. So I was quite surprised that it managed to run Amibian.js at all. Even without hardware acceleration it outperformed the Raspberry PI 3b+ by a factor of 4 (at the very least) and my particle demo ran at a whopping 8 fps (frames per second). The original Rasperry PI could barely manage 2 fps. So the Nano-PI Fire is leagues ahead of the PI in terms of raw cpu power, which is brilliant for headless servers or computational tasks.

FriendlyCore vs Lubuntu? QT for the win

Now here is a funny thing. So far I have used the Lubuntu standard Linux image, and performance has been interesting to say the least. No hardware acceleration, impressive cpu results but still – what good is a SBC Linux distro without fast graphics? Sure, if you just want a head-less file server or host services then you don’t need a beefy GPU. But here is the twist:

Turns out the makers of the board has a second, QT oriented distro called Friendly-core. And this image has OpenGL-ES support and all the missing acceleration lacking from Lubuntu.

I was pretty annoyed with how Asus gave users the run-around with Tinkerboard downloads, but they have thankfully cleaned up their act and listened to their customers. Friendly-elec might want to learn from Asus mistakes in this area.


QT has a rich history, but it’s being marginalized by node.js and Delphi these days

Alas, Friendly-core xenial 4.4 Arm64 image turned out to be a pure embedded development image. This is why the board has a debug port (which is probably awesome if you are into QT development). So this is for QT developers that want to use the board as a single-application system where they write the code on Windows or Linux, compile and it’s all transported to the board with live debugging back to the devtools they use. In other words: not very useful for non C/C++ QT developers.

Android Lolipop

2000px-Android_robot.svgI have only used Android on a pad and the odd Samsung Galaxy phone, so this should be interesting. I Downloaded the Lolipop disk image, burned it to the sd-card and booted up.

After 20 minutes with a blank screen i gave up.

I realize that some Android distros download packages ad-hoc and install directly from a repository, so it can take some time to get started; but 15-20 minutes with a black screen? The Android logo didn’t even show up — and that should be visible almost immediately regardless of network install or not.

This is really a great shame because I wanted to test some Delphi Firemonkey applications on it, to see how well it scales the more demanding GPU tasks. And yes i did try a different SD-Card to be sure it wasnt a disk error. Same result.

Back to Lubuntu

Having spent a considerable time trying to find a “wow” factor for this board, I have to just surrender to the fact that it’s just not there. . This is not a “PI” any more than the Tinkerboard is a PI. And appending “pi” to a product name will never change that.

I can imagine the Nano-PI Fire 3 being an awesome single-application board for QT C/C++ developers though. With a dedicated debug port making it a snap to transport, execute and do live debugging directly on the hardware — but for general DIY hacking, using it for native Android development with Delphi, or node.js development with Smart Mobile Studio – or just kicking back with emulators like Mame, UAE or whatever tickles your fancy — its just too rough around the edges. Which is really a shame!

So at the end of the day I re-installed Lubuntu and figure I just have to wait until Friendly-elec get their act together and issue proper drivers for the Mali GPU. So it’s $35 straight out the window — but I can live with that. It was a risk but at that price it’s not going to break the bank.

The positive thing

The Nano-PI Fire 3 is yet another SBC in a long list that fall short of its potential. Like many others they try to use the word “PI” to channel some of the Raspberry PI enthusiasm their way – but the quality of the actual system is not even close.

In fact, using PI in their product name is setting themselves up for a fall – because customers will quickly discover that this product is not a PI, which can cause some subconscious aversion and resentment.


The Nano rendered Amibian.js running some very demanding demos 4 times as fast as the PI 3b, one can only speculate what the board could do with proper drivers for the GPU.

The only positive feature the Fire-3 clearly has to offer, is abundantly more cpu power. It is without a doubt twice as fast (if not 3 times as fast) as the Raspberry PI 3b. The fact that it can render highly demanding and complex HTML5 demos 4 times faster than the Raspberry PI 3b without hardware acceleration is impressive. This is a $35 board after all, which is the same price.

But without proper drivers for the mali, it’s a useless toy. Powerful and with great potential, but utterly useless for multimedia and everything that relies on fast 2D and 3D graphics. For UAE (Amiga emulation) you can pretty much forget it. Even if you can compile the latest UAE4Arm with SDL as its primary display framework – it wouldn’t work because SDL depends on the graphics drivers. So it’s back to square one.

But the CPU packs a punch that is without question.

Final verdict

Top the x86 UP board, left bottom a Raspberry PI 3, bottom right the ODroid XU4

There are a lot of stable and excellent options out there, take your time

I was planning to test UAE next but as I have outlined above: without drivers that properly expose and delegate the power of the mali, it would be a complete disaster. I’m not even sure it would build.

As such I will just leave this board as is. If it matures at some point that would be great, but my advice to people looking for a great SBC experience — get the new Raspberry PI 3b+ and enjoy learning and exploring there.

And if you are into Amibian.js or making high quality HTML5 kiosk / node.js based systems, then fork out the extra $10 and buy an ODroid XU4. If you pay $55 you can pick up the Asus Tinkerboard which is blistering fast and great value for money, despite its turbulent introduction.

Note: You cannot go wrong with the ODroid XU4. Its affordable, stable and fast. So for beginners it’s either the Raspberry PI 3b+ or the ODroid. These are the most mature in terms of software, drivers and stability.

Power for pennies, getting a server rack and preparing my ultimate coding environment

July 18, 2018 Leave a comment

One of the benefits of doing repairs on your house, is that during the cleanup process you come over stuff you had completely forgot about. Like two very powerful Apple blade servers (x86) I received as a present three years ago. I never got around to using them because I there was literally no room in my house for a rack cabinet.

Sure, a medium model rack cabinet isn’t that big (the size of a cabin refrigerator), but you also have to factor in that servers are a lot more noisy than desktop PCs; the older they are the more noise they make. So unless you have a good spot to place the cabinet, where the noise wont make it unbearable to be around,  I suggest you just rent a virtual instance at Amazon or something. It really depends on how much service coding you do, if you need to do dedicated server and protocol stress testing (the list goes on).

Power for pennies


Sellers photo. It needs a good clean, but this kit would have set you back $5000 a decade ago; so picking this up for $400 is almost ridicules.

The price of such cabinets (when buying new ones) can be anything from $800 to $5000 depending on the capacity, features and materials. My needs for a personal server farm are more than covered by a medium cabinet. If it wasnt for my VMWare needs I would say it was overkill. But some of my work, especially with node.js and Delphi system services that should handle terabytes of raw data reliably 24/7, that demands a hard-core testing environment.

Having stumbled upon my blade servers I decided to check the local second-hand online forum; and I was lucky enough to find (drumroll) a second-hand cabinet holding a total of 10 blades for $400. So I’ll be picking up this beauty next weekend. It will be so good to finally get my blades organized. Not to mention all my SBC / Node.js cluster experiments centralized in one physical location. Far away from my home office space (!)

Interestingly, it comes fitted with 3 older servers. There are two Dell web and file servers, and then a third, unmarked mystery box (i3 cpu + sata caddies so that sounds good).

It really is amazing how much cpu fire-power you can pick up for practically nothing these days. $50 buys you a SBC (single board computer) that will rival a Pentium. $400 buys you a 10 blade cabinet and 3 servers that once powered a national newspaper (!).

VMWare delights

All the blades I have mentioned so far are older models. They are still powerful machines, way more than $400 livingroom NAS would get you. So my node.js clustering will run like a dream and I will be able to host all my Delphi development environments via VMware. Which brings us neatly to the blade I am really looking forward to get into the rack.

I bought an empty server blade case back in 2015. It takes a PSU, motherboard, fans and everything else is there (even the six caddies for disks). Into this seemingly worthless metal box I put a second generation Intel i7 monster (Asus motherboard), with 32 gigabyte ram – and fitted it with a sexy NVidia GEFORCE GTX 1080 TI.


All my Delphi work, Smart work and various legacy projects I maintain, all in one neat rack

This little monster (actually it takes up 2 blade-spots) allows me to run VMWare server, which gives me at least 10 instances of Windows (or Linux, or OSX) at the same time. It will also be able to host and manage roughly 1000 active Smart Desktop users (the bottleneck will be the disk and network more than actual computation).

Being a coder in 2018 is just fantastic!

Things we could only dream about a decade ago can now be picked up for close to nothing (compared to the original cost). Just awesome!